Efficient motion-corrected image reconstruction for 3D cardiac MRI through stochastic optimisation.

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Letizia Protopapa, Margaret Duff, Johannes Mayer, Jeanette Schulz-Menger, Kris Thielemans, Christoph Kolbitsch, Edoardo Pasca
{"title":"Efficient motion-corrected image reconstruction for 3D cardiac MRI through stochastic optimisation.","authors":"Letizia Protopapa, Margaret Duff, Johannes Mayer, Jeanette Schulz-Menger, Kris Thielemans, Christoph Kolbitsch, Edoardo Pasca","doi":"10.1088/1361-6560/adf609","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Motion-corrected image reconstruction (MCIR) allows for fast and efficient cardiac magnetic resonance imaging (MRI) acquisition with predictable scan times. Since data obtained in all phases of respiratory and cardiac motion can be exploited, the duration of the scan is not affected by changes in heart rate or irregular breathing patterns. Achieving high-quality reconstructions from MCIR data typically requires iterative optimisation algorithms with regularisation, where reconstruction time increases with the number of motion states. This is particularly relevant in cardiac MRI, where both cardiac and respiratory motion corrections are necessary to minimise motion artefacts.<i>Approach.</i>In this work, we present a stochastic optimisation approach for efficient MCIR of 3D cardiac MRI images using the stochastic primal dual hybrid gradient (SPDHG) algorithm.<i>Main results.</i>In phantom experiments with simulated motion, we demonstrate the improved convergence rates of SPDHG with respect to deterministic algorithms, while maintaining image quality. Convergence is improved both in terms of reconstruction times and computational effort. We validate the method's effectiveness on an<i>in vivo</i>3D whole-heart cardiac MR scan. The<i>in vivo</i>method demonstrates that the motion compensation method we use allows for non-rigid deformations and irregular breathing patterns.<i>Significance.</i>This study demonstrates that stochastic algorithms can converge significantly faster than deterministic algorithms for MCIR, especially for a large number of motion states. With the proposed approach, increasing the number of motion states reduces the number of epochs required to reconstruct the image and therefore it is no longer necessary to balance the competing requirements of accurate motion correction and computational effort.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adf609","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Motion-corrected image reconstruction (MCIR) allows for fast and efficient cardiac magnetic resonance imaging (MRI) acquisition with predictable scan times. Since data obtained in all phases of respiratory and cardiac motion can be exploited, the duration of the scan is not affected by changes in heart rate or irregular breathing patterns. Achieving high-quality reconstructions from MCIR data typically requires iterative optimisation algorithms with regularisation, where reconstruction time increases with the number of motion states. This is particularly relevant in cardiac MRI, where both cardiac and respiratory motion corrections are necessary to minimise motion artefacts.Approach.In this work, we present a stochastic optimisation approach for efficient MCIR of 3D cardiac MRI images using the stochastic primal dual hybrid gradient (SPDHG) algorithm.Main results.In phantom experiments with simulated motion, we demonstrate the improved convergence rates of SPDHG with respect to deterministic algorithms, while maintaining image quality. Convergence is improved both in terms of reconstruction times and computational effort. We validate the method's effectiveness on anin vivo3D whole-heart cardiac MR scan. Thein vivomethod demonstrates that the motion compensation method we use allows for non-rigid deformations and irregular breathing patterns.Significance.This study demonstrates that stochastic algorithms can converge significantly faster than deterministic algorithms for MCIR, especially for a large number of motion states. With the proposed approach, increasing the number of motion states reduces the number of epochs required to reconstruct the image and therefore it is no longer necessary to balance the competing requirements of accurate motion correction and computational effort.

通过随机优化的三维心脏MRI有效的运动校正图像重建。
运动校正图像重建(MCIR)允许快速有效的心脏 ;磁共振成像(MRI)采集和可预测的扫描时间。由于可以利用在呼吸和心脏运动的所有阶段获得的数据,因此扫描的持续时间不受心率变化或不规则呼吸模式的影响。从MCIR数据中获得高质量的重建通常需要具有正则化的迭代优化算法。重建时间随着运动状态数的增加而增加。这在心脏MRI中尤其重要,因为心脏和呼吸运动校正对于最小化运动伪影都是必要的。在这项工作中,我们提出了一种使用随机原始双混合梯度(SPDHG)算法的心肺MCIR随机优化方法。我们比较了与确定性优化方法的收敛速度。主要结果在模拟运动的幻影实验中,我们证明了SPDHG相对于确定性算法的收敛速度有所提高,同时保持了图像质量。在重建时间和计算工作量方面,收敛性都得到了改善。我们在活体3D全心脏MR扫描上验证了该方法的有效性。活体方法表明,我们使用的运动 ;补偿方法允许非刚性变形模式和不规则的 ;呼吸模式 ; ;意义 ;该研究表明,对于MCIR,随机算法的收敛速度明显快于确定性算法,特别是对于大量的运动 ;状态。通过提出的方法,增加运动状态的数量减少了重建图像所需的epoch数量,因此不再需要平衡精确运动校正和计算工作量的竞争要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信