Racial Misclassification of American Indian and Alaska Native People in the Electronic Medical Record: An Unexpected Hurdle in a Retrospective Medical Record Cohort Study.

IF 6 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Ann Marie Rusk, Alanna M Chamberlain, Jamie Felzer, Yvonne Bui, Christi A Patten, Christopher C Destephano, Matthew A Rank, Roberto P Benzo, Cassie C Kennedy
{"title":"Racial Misclassification of American Indian and Alaska Native People in the Electronic Medical Record: An Unexpected Hurdle in a Retrospective Medical Record Cohort Study.","authors":"Ann Marie Rusk, Alanna M Chamberlain, Jamie Felzer, Yvonne Bui, Christi A Patten, Christopher C Destephano, Matthew A Rank, Roberto P Benzo, Cassie C Kennedy","doi":"10.2196/73086","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>Electronic health record data represent a rich data source; however, data accuracy must be considered prior to reporting health outcomes among American Indian and Alaska Native people. Using a hybrid approach to harmonizing data from multiple sources represents a valid method of assessing data integrity in this population.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e73086"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/73086","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Unlabelled: Electronic health record data represent a rich data source; however, data accuracy must be considered prior to reporting health outcomes among American Indian and Alaska Native people. Using a hybrid approach to harmonizing data from multiple sources represents a valid method of assessing data integrity in this population.

美国印第安人和阿拉斯加原住民在电子病历中的种族错误分类:回顾性病历队列研究中的一个意想不到的障碍。
无标签:电子健康记录数据是丰富的数据源;然而,在报告美洲印第安人和阿拉斯加土著人的健康结果之前,必须考虑数据的准确性。使用混合方法来协调来自多个来源的数据是评估该群体数据完整性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信