{"title":"Engineered L-asparaginase variants with enhanced therapeutic properties to improve treatment of childhood acute lymphatic leukemia","authors":"Mainak Biswas, Soumika Sengupta, Khushboo A. Gandhi, Saurabh Kumar Gupta, Poonam B. Gera, Bhagyashri Soumya Nayak, Manaswini Jagadeb, Vikram Gota, Avinash Sonawane","doi":"10.1038/s41417-024-00865-6","DOIUrl":null,"url":null,"abstract":"Escherichia coli L-asparaginase (EcA), a key component of a multi-drug acute lymphatic leukemia (ALL) treatment regimen, has several limitations that reduce its therapeutic efficacy. The major disadvantages include immunogenicity, serum instability, shorter half-life, and accompanying glutaminase activity that causes neurotoxicity and pancreatitis. Pegylated asparaginase and Erwinase have better therapeutic potential, but they are expensive. Using site-directed mutagenesis, we created several EcA variants by substituting specific amino acid residues at the dimer-dimer interface and B-cell epitope regions. After several rounds of screening and selection, we identified two EcA variants viz. K288S/Y176F (KSY-17) and K288S/Y176F/W66Y (KSYW-17), which showed comparable asparaginase activity to wild-type (WT) and significantly less glutaminase activity (30.36 U/mg for WT vs 1.54 and 0.99 U/mg for KSY-17 and KSYW-17). KSYW-17 was less immunogenic than WT, eliciting 4.8–5.3-fold and 2.4–3.8-fold less IgG and IgM responses, respectively. Compared to WT EcA, we also observed significantly less (~1.5-2-fold) binding of these variants to pre-existing antibodies in ALL patients’ serum. Pharmacokinetic studies showed that KSY-17 (213.3 ± 6.5 min) and KSYW-17 (244.8 ± 35.5 min) had longer plasma half-lives than WT (101.1 ± 5.1 min). Both variants showed no toxicity up to 5000 IU/kg (single dose) and 1600 IU/kg (repeat dose) in mice. ALL xenograft mice studies showed a 90% and 70% reduction in leukemia burden in KSY-17 and KSYW-17 administered mice, respectively, as compared to 30% for WT after repeat dose administration, accompanied by significantly higher mice survival (100% vs. 70% vs. 10% for KSY-17 vs. KSYW-17 vs. WT). Overall, the engineered EcA variants’ showed improved therapeutic efficacy, thus making them promising candidates for primary and relapsed ALL treatment.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 10","pages":"1062-1075"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00865-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Escherichia coli L-asparaginase (EcA), a key component of a multi-drug acute lymphatic leukemia (ALL) treatment regimen, has several limitations that reduce its therapeutic efficacy. The major disadvantages include immunogenicity, serum instability, shorter half-life, and accompanying glutaminase activity that causes neurotoxicity and pancreatitis. Pegylated asparaginase and Erwinase have better therapeutic potential, but they are expensive. Using site-directed mutagenesis, we created several EcA variants by substituting specific amino acid residues at the dimer-dimer interface and B-cell epitope regions. After several rounds of screening and selection, we identified two EcA variants viz. K288S/Y176F (KSY-17) and K288S/Y176F/W66Y (KSYW-17), which showed comparable asparaginase activity to wild-type (WT) and significantly less glutaminase activity (30.36 U/mg for WT vs 1.54 and 0.99 U/mg for KSY-17 and KSYW-17). KSYW-17 was less immunogenic than WT, eliciting 4.8–5.3-fold and 2.4–3.8-fold less IgG and IgM responses, respectively. Compared to WT EcA, we also observed significantly less (~1.5-2-fold) binding of these variants to pre-existing antibodies in ALL patients’ serum. Pharmacokinetic studies showed that KSY-17 (213.3 ± 6.5 min) and KSYW-17 (244.8 ± 35.5 min) had longer plasma half-lives than WT (101.1 ± 5.1 min). Both variants showed no toxicity up to 5000 IU/kg (single dose) and 1600 IU/kg (repeat dose) in mice. ALL xenograft mice studies showed a 90% and 70% reduction in leukemia burden in KSY-17 and KSYW-17 administered mice, respectively, as compared to 30% for WT after repeat dose administration, accompanied by significantly higher mice survival (100% vs. 70% vs. 10% for KSY-17 vs. KSYW-17 vs. WT). Overall, the engineered EcA variants’ showed improved therapeutic efficacy, thus making them promising candidates for primary and relapsed ALL treatment.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.