Rohan Rattan, Simon Alamos, Matthew Szarzanowicz, Kasey Markel and Patrick M. Shih*,
{"title":"Rational Modulation of Plant Root Development Using Engineered Cytokinin Regulators","authors":"Rohan Rattan, Simon Alamos, Matthew Szarzanowicz, Kasey Markel and Patrick M. Shih*, ","doi":"10.1021/acssynbio.5c00051","DOIUrl":null,"url":null,"abstract":"<p >Achieving precise control over quantitative developmental phenotypes is a key objective in plant biology. Recent advances in synthetic biology have enabled tools to reprogram entire developmental pathways; however, the complexity of designing synthetic genetic programs and the inherent interactions between various signaling processes remains a critical challenge. Here, we leverage Type-B response regulators to modulate the expression of genes involved in cytokinin-dependent growth and development processes. We rationally engineered these regulators to modulate their transcriptional activity (i.e., repression or activation) and potency while reducing their sensitivity to cytokinin. By localizing the expression of these engineered transcription factors using tissue-specific promoters, we can predictably tune cytokinin-regulated traits. As a proof of principle, we deployed this synthetic system in <i>Arabidopsis thaliana</i> to either decrease or increase the number of lateral roots. The simplicity and modularity of our approach makes it an ideal system for controlling other developmental phenotypes of agronomic interest in plants.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 8","pages":"3013–3023"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acssynbio.5c00051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving precise control over quantitative developmental phenotypes is a key objective in plant biology. Recent advances in synthetic biology have enabled tools to reprogram entire developmental pathways; however, the complexity of designing synthetic genetic programs and the inherent interactions between various signaling processes remains a critical challenge. Here, we leverage Type-B response regulators to modulate the expression of genes involved in cytokinin-dependent growth and development processes. We rationally engineered these regulators to modulate their transcriptional activity (i.e., repression or activation) and potency while reducing their sensitivity to cytokinin. By localizing the expression of these engineered transcription factors using tissue-specific promoters, we can predictably tune cytokinin-regulated traits. As a proof of principle, we deployed this synthetic system in Arabidopsis thaliana to either decrease or increase the number of lateral roots. The simplicity and modularity of our approach makes it an ideal system for controlling other developmental phenotypes of agronomic interest in plants.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.