Zero-Shot Image Harmonization With Generative Model Prior

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jianqi Chen;Yilan Zhang;Zhengxia Zou;Keyan Chen;Zhenwei Shi
{"title":"Zero-Shot Image Harmonization With Generative Model Prior","authors":"Jianqi Chen;Yilan Zhang;Zhengxia Zou;Keyan Chen;Zhenwei Shi","doi":"10.1109/TMM.2025.3535343","DOIUrl":null,"url":null,"abstract":"We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images in existing methods. These methods, while showing promising results, involve significant training expenses and often struggle with generalization to unseen images. To this end, we introduce a fully modularized framework inspired by human behavior. Leveraging the reasoning capabilities of recent foundation models in language and vision, our approach comprises three main stages. Initially, we employ a pretrained vision-language model (VLM) to generate descriptions for the composite image. Subsequently, these descriptions guide the foreground harmonization direction of a text-to-image generative model (T2I). We refine text embeddings for enhanced representation of imaging conditions and employ self-attention and edge maps for structure preservation. Following each harmonization iteration, an evaluator determines whether to conclude or modify the harmonization direction. The resulting framework, mirroring human behavior, achieves harmonious results without the need for extensive training. We present compelling visual results across diverse scenes and objects, along with quantitative comparisons validating the effectiveness of our approach.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"4494-4507"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858769/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images in existing methods. These methods, while showing promising results, involve significant training expenses and often struggle with generalization to unseen images. To this end, we introduce a fully modularized framework inspired by human behavior. Leveraging the reasoning capabilities of recent foundation models in language and vision, our approach comprises three main stages. Initially, we employ a pretrained vision-language model (VLM) to generate descriptions for the composite image. Subsequently, these descriptions guide the foreground harmonization direction of a text-to-image generative model (T2I). We refine text embeddings for enhanced representation of imaging conditions and employ self-attention and edge maps for structure preservation. Following each harmonization iteration, an evaluator determines whether to conclude or modify the harmonization direction. The resulting framework, mirroring human behavior, achieves harmonious results without the need for extensive training. We present compelling visual results across diverse scenes and objects, along with quantitative comparisons validating the effectiveness of our approach.
基于先验生成模型的零镜头图像协调
为了克服现有方法对大量合成图像的依赖,提出了一种零镜头图像协调方法。这些方法虽然显示出有希望的结果,但涉及大量的训练费用,并且经常难以对未见过的图像进行泛化。为此,我们引入了一个受人类行为启发的完全模块化框架。利用最近语言和视觉基础模型的推理能力,我们的方法包括三个主要阶段。首先,我们使用预训练的视觉语言模型(VLM)来生成合成图像的描述。随后,这些描述指导了文本到图像生成模型(tt2i)的前景协调方向。我们改进文本嵌入以增强成像条件的表示,并使用自关注和边缘图来保存结构。在每次协调迭代之后,评估者决定是结束还是修改协调方向。由此产生的框架,反映了人类的行为,达到了和谐的结果,而不需要大量的训练。我们在不同的场景和对象中呈现了引人注目的视觉结果,并进行了定量比较,验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信