{"title":"Compression-Aware Hybrid Framework for Deep Fake Detection in Low-Quality Video","authors":"Lagsoun Abdel Motalib;Oujaoura Mustapha;Hedabou Mustapha","doi":"10.1109/ACCESS.2025.3592358","DOIUrl":null,"url":null,"abstract":"Deep fakes pose a growing threat to digital media integrity by generating highly realistic fake videos that are difficult to detect, especially under the high compression levels commonly used on social media platforms. These compression artifacts often degrade the performance of deep fake detectors, making reliable detection even more challenging. In this paper, we propose a handcrafted deep fake detection framework that integrates wavelet transforms and Conv3D-based spatiotemporal descriptors for feature extraction, followed by a lightweight ResNet-inspired classifier. Unlike end-to-end deep neural networks, our method emphasizes interpretability and computational efficiency, while maintaining high detection accuracy under diverse real-world conditions. We evaluated four configurations based on input modality and attention mechanisms: RGB with attention, RGB without attention, grayscale with attention, and grayscale without attention. Experiments were conducted on the FaceForensics++ dataset (C23 and C40 compression levels) and Celeb-DF v2 (C0 and C40), across intra- and inter-compression settings, as well as cross-dataset scenarios. Results show that RGB inputs without attention achieve the highest accuracy on FaceForensics++, while grayscale inputs without attention perform best in cross-dataset evaluations on Celeb-DF v2, attaining strong AUC scores. Despite its handcrafted nature, our approach matches or surpasses the existing state-of-the-art (SOTA) methods. Grad-CAM visualizations further reveal both strengths and failures (e.g., occlusion and misalignment), offering valuable insights for refinement. These findings underscore the potential of our framework for efficient and effective deep fake detection in low-resource and real-time environments.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"131980-131997"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11095666","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11095666/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep fakes pose a growing threat to digital media integrity by generating highly realistic fake videos that are difficult to detect, especially under the high compression levels commonly used on social media platforms. These compression artifacts often degrade the performance of deep fake detectors, making reliable detection even more challenging. In this paper, we propose a handcrafted deep fake detection framework that integrates wavelet transforms and Conv3D-based spatiotemporal descriptors for feature extraction, followed by a lightweight ResNet-inspired classifier. Unlike end-to-end deep neural networks, our method emphasizes interpretability and computational efficiency, while maintaining high detection accuracy under diverse real-world conditions. We evaluated four configurations based on input modality and attention mechanisms: RGB with attention, RGB without attention, grayscale with attention, and grayscale without attention. Experiments were conducted on the FaceForensics++ dataset (C23 and C40 compression levels) and Celeb-DF v2 (C0 and C40), across intra- and inter-compression settings, as well as cross-dataset scenarios. Results show that RGB inputs without attention achieve the highest accuracy on FaceForensics++, while grayscale inputs without attention perform best in cross-dataset evaluations on Celeb-DF v2, attaining strong AUC scores. Despite its handcrafted nature, our approach matches or surpasses the existing state-of-the-art (SOTA) methods. Grad-CAM visualizations further reveal both strengths and failures (e.g., occlusion and misalignment), offering valuable insights for refinement. These findings underscore the potential of our framework for efficient and effective deep fake detection in low-resource and real-time environments.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.