Molecular mechanisms of Lobeline-mediated inhibition of lysozyme amyloidogenesis: A synergistic approach using biophysical and cheminformatics techniques
{"title":"Molecular mechanisms of Lobeline-mediated inhibition of lysozyme amyloidogenesis: A synergistic approach using biophysical and cheminformatics techniques","authors":"Vibeizonuo Rupreo , Ria Saha , Jhimli Bhattacharyya , Rajib Kumar Mitra","doi":"10.1016/j.bpc.2025.107502","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous pathological conditions, collectively termed amyloidosis, are associated with the aggregation of misfolded proteins under stressed physiochemical conditions. Natural compounds capable of modulating protein aggregation or disassembling preformed fibrils hold promise as potential therapeutic candidates for treating aggregation-related diseases. In this study, we aim to examine the binding interaction and effectiveness of Lobeline (Lob), a piperidine alkaloid, in preventing the formation of acid-denatured Lysozyme (Lyz) amyloid using various spectroscopic, cheminformatics and imaging techniques. Steady-state and time-resolved fluorescence measurements confirm a direct interaction between Lyz and Lob with a binding constant of ∼10<sup>6</sup> M<sup>−1</sup> with a 1:1 binding stoichiometry. The association has been found to be spontaneous and is driven by entropy involving non-electrostatic interactions. Molecular Docking shows that Lob stabilizes Lyz by hydrophobic and hydrophilic interactions. The anti-amyloid properties of Lob in Lyz amyloid fibrils are assessed through a range of in vitro techniques, including turbidity measurement, dynamic light scattering (DLS), Thioflavin T (ThT) fluorescence, Circular Dichroism studies and Field Emission Scanning Electron Microscopy (FESEM) imaging. These studies demonstrate that Lob halts the fibrillation of acid-treated Lyz at the nucleation stage by providing alternative pathways for hydrogen bonding and other weak interactions with key amino acid residues necessary for the formation of oligomers and fibrils.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"326 ","pages":"Article 107502"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225001140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous pathological conditions, collectively termed amyloidosis, are associated with the aggregation of misfolded proteins under stressed physiochemical conditions. Natural compounds capable of modulating protein aggregation or disassembling preformed fibrils hold promise as potential therapeutic candidates for treating aggregation-related diseases. In this study, we aim to examine the binding interaction and effectiveness of Lobeline (Lob), a piperidine alkaloid, in preventing the formation of acid-denatured Lysozyme (Lyz) amyloid using various spectroscopic, cheminformatics and imaging techniques. Steady-state and time-resolved fluorescence measurements confirm a direct interaction between Lyz and Lob with a binding constant of ∼106 M−1 with a 1:1 binding stoichiometry. The association has been found to be spontaneous and is driven by entropy involving non-electrostatic interactions. Molecular Docking shows that Lob stabilizes Lyz by hydrophobic and hydrophilic interactions. The anti-amyloid properties of Lob in Lyz amyloid fibrils are assessed through a range of in vitro techniques, including turbidity measurement, dynamic light scattering (DLS), Thioflavin T (ThT) fluorescence, Circular Dichroism studies and Field Emission Scanning Electron Microscopy (FESEM) imaging. These studies demonstrate that Lob halts the fibrillation of acid-treated Lyz at the nucleation stage by providing alternative pathways for hydrogen bonding and other weak interactions with key amino acid residues necessary for the formation of oligomers and fibrils.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.