Alex Jordan , Lucas Hermelingmeier , Julian Gilich , Gerson Meschut , Marco De Santis , Alexander Schlüter
{"title":"Comparison of the economic efficiency and sustainability of two debonding processes for structurally bonded sills","authors":"Alex Jordan , Lucas Hermelingmeier , Julian Gilich , Gerson Meschut , Marco De Santis , Alexander Schlüter","doi":"10.1016/j.jajp.2025.100332","DOIUrl":null,"url":null,"abstract":"<div><div>In light of growing demands for resource efficiency and sustainability in vehicle engineering, the environmentally compatible separation of structural adhesive joints is gaining increasing relevance. This study presents a comparative analysis of two physically based debonding methods: the established hot-air process and a cryogenic cold process based on liquid nitrogen (LN<sub>2</sub>). The primary objective is to assess the ecological impact and process-related sustainability of both approaches.</div><div>Experimental investigations were conducted on a component-representative triple-sheet structure that simulates common automotive flange joints. Thermal input was applied either by convective heating using a hot air gun or by direct cooling through a contact-based LN<sub>2</sub> tool. The resulting temperature profiles were recorded using spatially distributed thermocouples. Subsequently, the outer panel was selectively debonded to replicate a repair scenario, and the mechanical integrity of the remaining adhesive joint was evaluated through Mode I testing of l-shaped specimens. Process data served as input for an Life Cycle Assessment (LCA) according to DIN EN ISO 14,040.</div><div>The cryogenic method achieved a 40 % reduction in carbon footprint compared to the hot-air process (0.337 kg vs. 0.559 kg CO<sub>2</sub>-equivalents), primarily due to its shorter process time and more efficient heat transfer. While the hot-air method’s impact is mainly driven by electrical energy use, that of the cold method stems from cryogenic media consumption. Notwithstanding certain disadvantages in specific impact categories, the LN<sub>2</sub>-based process exhibits a superior overall ecological performance and signifies a promising solution for repair- and recycling-oriented adhesive separation in structural vehicle applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100332"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In light of growing demands for resource efficiency and sustainability in vehicle engineering, the environmentally compatible separation of structural adhesive joints is gaining increasing relevance. This study presents a comparative analysis of two physically based debonding methods: the established hot-air process and a cryogenic cold process based on liquid nitrogen (LN2). The primary objective is to assess the ecological impact and process-related sustainability of both approaches.
Experimental investigations were conducted on a component-representative triple-sheet structure that simulates common automotive flange joints. Thermal input was applied either by convective heating using a hot air gun or by direct cooling through a contact-based LN2 tool. The resulting temperature profiles were recorded using spatially distributed thermocouples. Subsequently, the outer panel was selectively debonded to replicate a repair scenario, and the mechanical integrity of the remaining adhesive joint was evaluated through Mode I testing of l-shaped specimens. Process data served as input for an Life Cycle Assessment (LCA) according to DIN EN ISO 14,040.
The cryogenic method achieved a 40 % reduction in carbon footprint compared to the hot-air process (0.337 kg vs. 0.559 kg CO2-equivalents), primarily due to its shorter process time and more efficient heat transfer. While the hot-air method’s impact is mainly driven by electrical energy use, that of the cold method stems from cryogenic media consumption. Notwithstanding certain disadvantages in specific impact categories, the LN2-based process exhibits a superior overall ecological performance and signifies a promising solution for repair- and recycling-oriented adhesive separation in structural vehicle applications.
随着汽车工程对资源效率和可持续性的要求越来越高,结构粘接接头的环境兼容分离越来越重要。本研究对比分析了两种基于物理的脱粘方法:已建立的热空气法和基于液氮(LN2)的低温冷法。主要目标是评估这两种方法的生态影响和与过程有关的可持续性。以具有代表性的三板结构为研究对象,模拟了常见的汽车法兰连接。热输入可以通过热风枪对流加热,也可以通过接触式LN2工具直接冷却。利用空间分布的热电偶记录得到的温度分布。随后,有选择地剥离外面板以复制修复场景,并通过l形试件的I型测试评估剩余粘合接头的机械完整性。根据DIN EN ISO 14040,过程数据作为生命周期评估(LCA)的输入。与热空气法相比,深冷法的碳足迹减少了40% (0.337 kg对0.559 kg二氧化碳当量),这主要是由于其更短的工艺时间和更有效的传热。热空气法的影响主要是由电能的使用驱动的,而冷法的影响则源于低温介质的消耗。尽管在特定的影响类别中存在一定的缺点,但基于ln2的工艺表现出优越的整体生态性能,并标志着结构车辆应用中以修复和回收为导向的粘合剂分离的有希望的解决方案。