{"title":"Pitfalls in machine learning interpretability: Manipulating partial dependence plots to hide discrimination","authors":"Xi Xin , Giles Hooker , Fei Huang","doi":"10.1016/j.insmatheco.2025.103135","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of artificial intelligence (AI) across industries has led to the widespread use of complex black-box models and interpretation tools for decision making. This paper proposes an adversarial framework to uncover the vulnerability of permutation-based interpretation methods for machine learning tasks, with a particular focus on partial dependence (PD) plots. This adversarial framework modifies the original black box model to manipulate its predictions for instances in the extrapolation domain. As a result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving most of the original model's predictions. This framework can produce multiple fooled PD plots via a single model. By using real-world datasets including an auto insurance claims dataset and COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally hide the discriminatory behavior of a predictor and make the black-box model appear neutral through interpretation tools like PD plots while retaining almost all the predictions of the original black-box model. Managerial insights for regulators and practitioners are provided based on the findings.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"125 ","pages":"Article 103135"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668725000824","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of artificial intelligence (AI) across industries has led to the widespread use of complex black-box models and interpretation tools for decision making. This paper proposes an adversarial framework to uncover the vulnerability of permutation-based interpretation methods for machine learning tasks, with a particular focus on partial dependence (PD) plots. This adversarial framework modifies the original black box model to manipulate its predictions for instances in the extrapolation domain. As a result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving most of the original model's predictions. This framework can produce multiple fooled PD plots via a single model. By using real-world datasets including an auto insurance claims dataset and COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally hide the discriminatory behavior of a predictor and make the black-box model appear neutral through interpretation tools like PD plots while retaining almost all the predictions of the original black-box model. Managerial insights for regulators and practitioners are provided based on the findings.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.