{"title":"SYT13: An underestimated synaptotagmin","authors":"Johannes Lehmann , Alberto Catanese","doi":"10.1016/j.bbamcr.2025.120031","DOIUrl":null,"url":null,"abstract":"<div><div>Synaptotagmin-13 (SYT13) is a non-canonical member of the of synaptotagmin family that, canonical synaptotagmins, doesn't contain Ca<sup>2+</sup> binding sites, but still appears to play a key role in the control of different cellular processes such as vesicle transport, cell migration, signaling and cell development. The recent findings associate SYT13 with neuronal survival and development, metabolic homeostasis (especially insulin secretion) and both oncogenic and tumor suppressive function in multiple cancers. And yet all this data is scattered in fields, with no systematic review covering SYT13's detailed biology. A comprehensive literature review is therefore needed to explain SYT13's multifaceted roles, uncover informational gaps and direct future studies to exploit SYT13 as a target for neurodegeneration, metabolic disease and cancer therapy.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 8","pages":"Article 120031"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925001363","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synaptotagmin-13 (SYT13) is a non-canonical member of the of synaptotagmin family that, canonical synaptotagmins, doesn't contain Ca2+ binding sites, but still appears to play a key role in the control of different cellular processes such as vesicle transport, cell migration, signaling and cell development. The recent findings associate SYT13 with neuronal survival and development, metabolic homeostasis (especially insulin secretion) and both oncogenic and tumor suppressive function in multiple cancers. And yet all this data is scattered in fields, with no systematic review covering SYT13's detailed biology. A comprehensive literature review is therefore needed to explain SYT13's multifaceted roles, uncover informational gaps and direct future studies to exploit SYT13 as a target for neurodegeneration, metabolic disease and cancer therapy.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.