Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan
{"title":"Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation","authors":"Qinhui Guan ,&nbsp;Yuhao Guo ,&nbsp;Na Li ,&nbsp;Jing Li ,&nbsp;Tingjiang Yan","doi":"10.1016/j.actphy.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of photocatalytic CO<sub>2</sub> hydrogenation, the adsorption-desorption behaviors and dynamics of photogenerated carriers are pivotal determinants of the kinetic processes and overall efficiency of photocatalytic reactions. Herein, 5A molecular sieve-functionalized In<sub>2</sub>O<sub>3</sub> composites (denoted as IO@5A-<em>x</em>wt%) were fabricated through a facile impregnation-calcination method. Among them, the IO@5A-5wt% composite, with the optimized loading amount of 5A molecular sieves, showcases outstanding performance in photocatalytic conversion of CO<sub>2</sub> to CO, achieving a CO production rate of 2610.55 μmol g<sup>−1</sup> h<sup>−1</sup>, which is 19 times higher than that of pristine In<sub>2</sub>O<sub>3</sub>. Moreover, the IO@5A-5wt% composite maintains acceptable catalytic stability after a prolonged experiment lasting 45 h and total of 108 cycles. A comprehensive series of characterization techniques and performance evaluations reveal that the incorporation of 5A molecular sieves significantly modulates the adsorption-desorption behavior and hole dynamics during photocatalytic reactions. The multi-channel architecture of 5A molecular sieves, featuring suitable pore sizes, effectively enhances CO<sub>2</sub> adsorption. Meanwhile, the surface hydroxyl groups of 5A molecular sieves facilitate the transfer of photogenerated holes, thereby suppressing the recombination of photogenerated carriers. Additionally, the reaction product H<sub>2</sub>O desorbs more readily from the catalyst surface. These synergistic effects collectively constitute the key mechanism underlying the enhanced photocatalytic performance of the IO@5A-5wt% composite.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 11","pages":"Article 100133"},"PeriodicalIF":13.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100068182500089X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of photocatalytic CO2 hydrogenation, the adsorption-desorption behaviors and dynamics of photogenerated carriers are pivotal determinants of the kinetic processes and overall efficiency of photocatalytic reactions. Herein, 5A molecular sieve-functionalized In2O3 composites (denoted as IO@5A-xwt%) were fabricated through a facile impregnation-calcination method. Among them, the IO@5A-5wt% composite, with the optimized loading amount of 5A molecular sieves, showcases outstanding performance in photocatalytic conversion of CO2 to CO, achieving a CO production rate of 2610.55 μmol g−1 h−1, which is 19 times higher than that of pristine In2O3. Moreover, the IO@5A-5wt% composite maintains acceptable catalytic stability after a prolonged experiment lasting 45 h and total of 108 cycles. A comprehensive series of characterization techniques and performance evaluations reveal that the incorporation of 5A molecular sieves significantly modulates the adsorption-desorption behavior and hole dynamics during photocatalytic reactions. The multi-channel architecture of 5A molecular sieves, featuring suitable pore sizes, effectively enhances CO2 adsorption. Meanwhile, the surface hydroxyl groups of 5A molecular sieves facilitate the transfer of photogenerated holes, thereby suppressing the recombination of photogenerated carriers. Additionally, the reaction product H2O desorbs more readily from the catalyst surface. These synergistic effects collectively constitute the key mechanism underlying the enhanced photocatalytic performance of the IO@5A-5wt% composite.

Abstract Image

分子筛催化氧化铟催化剂增强光催化CO2加氢作用
在光催化CO2加氢领域,光生成载体的吸附-解吸行为和动力学是光催化反应动力学过程和整体效率的关键决定因素。本文采用易浸渍-煅烧法制备了5A分子筛功能化In2O3复合材料(表示为IO@5A-xwt%)。其中,IO@5A-5wt%的复合材料在优化5A分子筛负载量的情况下,在CO2光催化转化为CO方面表现出优异的性能,CO产率达到2610.55 μmol g−1 h−1,是原始In2O3的19倍。此外,IO@5A-5wt%复合材料在45小时的长时间实验和总共108次循环后仍保持可接受的催化稳定性。综合一系列表征技术和性能评价表明,5A分子筛的掺入可显著调节光催化反应中的吸附-解吸行为和孔动力学。5A分子筛的多通道结构,合适的孔径,有效提高了CO2的吸附能力。同时,5A分子筛表面的羟基促进了光生空穴的转移,从而抑制了光生载体的重组。此外,反应产物H2O更容易从催化剂表面解吸。这些协同效应共同构成了IO@5A-5wt%复合材料增强光催化性能的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信