An extensible and scalable system for hash lookup and approximate similarity search with similarity digest algorithms

IF 2.2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniel Huici , Ricardo J. Rodríguez , Eduardo Mena
{"title":"An extensible and scalable system for hash lookup and approximate similarity search with similarity digest algorithms","authors":"Daniel Huici ,&nbsp;Ricardo J. Rodríguez ,&nbsp;Eduardo Mena","doi":"10.1016/j.fsidi.2025.301930","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient management and analysis of large volumes of digital data has emerged as a major challenge in the field of digital forensics. To quickly identify and analyze relevant artifacts within large datasets, we introduce <span>APOTHEOSIS</span>, an approximate similarity search system designed for scalability and efficiency. Our system integrates approximate search techniques (which allow searching for a match on a close value) with Similarity Digest Algorithms (SDA; which capture common features between similar elements), using a space-saving radix tree and a graph-based hierarchical navigable small world structure to perform fast approximate nearest neighbor searches. We demonstrate the effectiveness and versatility of our system through two key case studies: first, in plagiarism detection, demonstrating the effectiveness of our system in identifying similar or duplicate documents within a large source code dataset; then, in memory artifact detection, showing its scalability and performance in processing large-scale forensic data collected from various versions of Microsoft Windows. Our comprehensive evaluation shows that <span>APOTHEOSIS</span> not only efficiently handles large datasets, but also provides a way to evaluate the performance of various SDA and their approximate similarity search in different forensic scenarios.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"53 ","pages":"Article 301930"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000691","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient management and analysis of large volumes of digital data has emerged as a major challenge in the field of digital forensics. To quickly identify and analyze relevant artifacts within large datasets, we introduce APOTHEOSIS, an approximate similarity search system designed for scalability and efficiency. Our system integrates approximate search techniques (which allow searching for a match on a close value) with Similarity Digest Algorithms (SDA; which capture common features between similar elements), using a space-saving radix tree and a graph-based hierarchical navigable small world structure to perform fast approximate nearest neighbor searches. We demonstrate the effectiveness and versatility of our system through two key case studies: first, in plagiarism detection, demonstrating the effectiveness of our system in identifying similar or duplicate documents within a large source code dataset; then, in memory artifact detection, showing its scalability and performance in processing large-scale forensic data collected from various versions of Microsoft Windows. Our comprehensive evaluation shows that APOTHEOSIS not only efficiently handles large datasets, but also provides a way to evaluate the performance of various SDA and their approximate similarity search in different forensic scenarios.
一个可扩展和可扩展的系统,用于散列查找和使用相似摘要算法的近似相似搜索
高效管理和分析大量数字数据已成为数字取证领域的主要挑战。为了快速识别和分析大型数据集中的相关工件,我们引入了APOTHEOSIS,这是一个为可扩展性和效率而设计的近似相似性搜索系统。我们的系统集成了近似搜索技术(允许在接近值上搜索匹配)和相似摘要算法(SDA;它捕获相似元素之间的共同特征),使用节省空间的基数树和基于图的分层可导航小世界结构来执行快速近似最近邻搜索。我们通过两个关键案例研究展示了我们系统的有效性和多功能性:首先,在抄袭检测方面,展示了我们的系统在大型源代码数据集中识别相似或重复文档的有效性;然后,在内存伪迹检测方面,展示了该方法在处理来自不同版本Microsoft Windows的大规模取证数据时的可扩展性和性能。综合评价表明,APOTHEOSIS不仅能够有效地处理大型数据集,而且还提供了一种方法来评估各种SDA的性能及其在不同取证场景下的近似相似性搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信