Image Denoising Using Green Channel Prior

IF 13.7
Zhaoming Kong;Fangxi Deng;Xiaowei Yang
{"title":"Image Denoising Using Green Channel Prior","authors":"Zhaoming Kong;Fangxi Deng;Xiaowei Yang","doi":"10.1109/TIP.2025.3592550","DOIUrl":null,"url":null,"abstract":"Image denoising is an appealing and challenging task, in that noise statistics of real-world observations may vary with local image contents and different image channels. Specifically, the green channel usually has twice the sampling rate in raw data. To handle noise variances and leverage such channel-wise prior information, we propose a simple and effective green channel prior-based image denoising (GCP-ID) method, which integrates GCP into the classic patch-based denoising framework. Briefly, we exploit the green channel to guide the search for similar patches, which aims to improve the patch grouping quality and encourage sparsity in the transform domain. The grouped image patches are then reformulated into RGGB arrays to explicitly characterize the density of green samples. Furthermore, to enhance the adaptivity of GCP-ID to various image contents, we cast the noise estimation problem into a classification task and train an effective estimator based on convolutional neural networks (CNNs). Experiments on real-world datasets demonstrate the competitive performance of the proposed GCP-ID method for image and video denoising applications in both raw and sRGB spaces. Our code is available at <uri>https://github.com/ZhaomingKong/GCP-ID</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4869-4884"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11104998/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising is an appealing and challenging task, in that noise statistics of real-world observations may vary with local image contents and different image channels. Specifically, the green channel usually has twice the sampling rate in raw data. To handle noise variances and leverage such channel-wise prior information, we propose a simple and effective green channel prior-based image denoising (GCP-ID) method, which integrates GCP into the classic patch-based denoising framework. Briefly, we exploit the green channel to guide the search for similar patches, which aims to improve the patch grouping quality and encourage sparsity in the transform domain. The grouped image patches are then reformulated into RGGB arrays to explicitly characterize the density of green samples. Furthermore, to enhance the adaptivity of GCP-ID to various image contents, we cast the noise estimation problem into a classification task and train an effective estimator based on convolutional neural networks (CNNs). Experiments on real-world datasets demonstrate the competitive performance of the proposed GCP-ID method for image and video denoising applications in both raw and sRGB spaces. Our code is available at https://github.com/ZhaomingKong/GCP-ID
基于绿色通道先验的图像去噪
图像去噪是一项具有吸引力和挑战性的任务,因为真实世界观测的噪声统计可能会随着局部图像内容和不同的图像通道而变化。具体来说,绿色通道在原始数据中通常具有两倍的采样率。为了处理噪声方差并利用这些通道先验信息,我们提出了一种简单有效的基于绿色通道先验的图像去噪(GCP- id)方法,该方法将GCP集成到经典的基于补丁的去噪框架中。简单地说,我们利用绿色通道来指导搜索相似的补丁,旨在提高补丁分组质量并鼓励变换域的稀疏性。然后将分组图像块重新制定为RGGB阵列,以明确表征绿色样本的密度。此外,为了增强GCP-ID对各种图像内容的自适应能力,我们将噪声估计问题转化为分类任务,并基于卷积神经网络(cnn)训练一个有效的估计器。在真实数据集上的实验证明了所提出的GCP-ID方法在原始和sRGB空间中用于图像和视频去噪应用的竞争性性能。我们的代码可在https://github.com/ZhaomingKong/GCP-ID上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信