Meta‐Heuristic Optimization for the Multi‐Classification of Chronic Disease: A Review With Machine Learning Perspectives

Akansha Singh, Nupur Prakash, Anurag Jain
{"title":"Meta‐Heuristic Optimization for the Multi‐Classification of Chronic Disease: A Review With Machine Learning Perspectives","authors":"Akansha Singh, Nupur Prakash, Anurag Jain","doi":"10.1002/widm.70030","DOIUrl":null,"url":null,"abstract":"Chronic diseases (CDs) present a global health challenge due to their complex, overlapping symptoms and the limitations of traditional diagnostic methods. Artificial intelligence (AI)‐based techniques, particularly Machine Learning (ML) and Meta‐Heuristic Optimization (MHO) algorithms, have emerged as powerful tools for addressing these challenges. This review examines ML and MHO‐based approaches for the multi‐classification of CDs, highlighting how MHO enhances ML frameworks by addressing key limitations such as class imbalance and suboptimal feature selection. Despite these advancements, MHO‐based methods face challenges, including computational complexity and algorithmic biases, which require further research. By critically analyzing existing studies and identifying gaps, this paper provides a foundation for developing more robust and efficient diagnostic models for CDs.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Application Areas &gt; Health Care</jats:list-item> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> <jats:list-item>Technologies &gt; Prediction</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"148 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic diseases (CDs) present a global health challenge due to their complex, overlapping symptoms and the limitations of traditional diagnostic methods. Artificial intelligence (AI)‐based techniques, particularly Machine Learning (ML) and Meta‐Heuristic Optimization (MHO) algorithms, have emerged as powerful tools for addressing these challenges. This review examines ML and MHO‐based approaches for the multi‐classification of CDs, highlighting how MHO enhances ML frameworks by addressing key limitations such as class imbalance and suboptimal feature selection. Despite these advancements, MHO‐based methods face challenges, including computational complexity and algorithmic biases, which require further research. By critically analyzing existing studies and identifying gaps, this paper provides a foundation for developing more robust and efficient diagnostic models for CDs.This article is categorized under: Application Areas > Health Care Technologies > Machine Learning Technologies > Prediction
慢性病多重分类的元启发式优化:基于机器学习视角的综述
慢性疾病由于其复杂、重叠的症状和传统诊断方法的局限性,对全球健康构成了挑战。基于人工智能(AI)的技术,特别是机器学习(ML)和元启发式优化(MHO)算法,已经成为解决这些挑战的强大工具。本文研究了基于ML和基于MHO的cd多分类方法,强调了MHO如何通过解决类不平衡和次优特征选择等关键限制来增强ML框架。尽管取得了这些进步,但基于MHO的方法仍面临挑战,包括计算复杂性和算法偏差,这需要进一步研究。通过批判性地分析现有研究并找出差距,本文为开发更健壮和有效的cd诊断模型提供了基础。本文分类如下:应用领域>;医疗保健技术;机器学习技术;预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信