{"title":"AdaAugment: A Tuning-Free and Adaptive Approach to Enhance Data Augmentation","authors":"Suorong Yang;Peijia Li;Xin Xiong;Furao Shen;Jian Zhao","doi":"10.1109/TIP.2025.3592538","DOIUrl":null,"url":null,"abstract":"Data augmentation (DA) is widely employed to improve the generalization performance of deep models. However, most existing DA methods employ augmentation operations with fixed or random magnitudes throughout the training process. While this fosters data diversity, it can also inevitably introduce uncontrolled variability in augmented data, which could potentially cause misalignment with the evolving training status of the target models. Both theoretical and empirical findings suggest that this misalignment increases the risks of both underfitting and overfitting. To address these limitations, we propose AdaAugment, an innovative and tuning-free adaptive augmentation method that leverages reinforcement learning to dynamically and adaptively adjust augmentation magnitudes for individual training samples based on real-time feedback from the target network. Specifically, AdaAugment features a dual-model architecture consisting of a policy network and a target network, which are jointly optimized to adapt augmentation magnitudes in accordance with the model’s training progress effectively. The policy network optimizes the variability within the augmented data, while the target network utilizes the adaptively augmented samples for training. These two networks are jointly optimized and mutually reinforce each other. Extensive experiments across benchmark datasets and deep architectures demonstrate that AdaAugment consistently outperforms other state-of-the-art DA methods in effectiveness while maintaining remarkable efficiency. Code is available at <uri>https://github.com/Jackbrocp/AdaAugment.</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4843-4855"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11104992/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data augmentation (DA) is widely employed to improve the generalization performance of deep models. However, most existing DA methods employ augmentation operations with fixed or random magnitudes throughout the training process. While this fosters data diversity, it can also inevitably introduce uncontrolled variability in augmented data, which could potentially cause misalignment with the evolving training status of the target models. Both theoretical and empirical findings suggest that this misalignment increases the risks of both underfitting and overfitting. To address these limitations, we propose AdaAugment, an innovative and tuning-free adaptive augmentation method that leverages reinforcement learning to dynamically and adaptively adjust augmentation magnitudes for individual training samples based on real-time feedback from the target network. Specifically, AdaAugment features a dual-model architecture consisting of a policy network and a target network, which are jointly optimized to adapt augmentation magnitudes in accordance with the model’s training progress effectively. The policy network optimizes the variability within the augmented data, while the target network utilizes the adaptively augmented samples for training. These two networks are jointly optimized and mutually reinforce each other. Extensive experiments across benchmark datasets and deep architectures demonstrate that AdaAugment consistently outperforms other state-of-the-art DA methods in effectiveness while maintaining remarkable efficiency. Code is available at https://github.com/Jackbrocp/AdaAugment.