Uncoupling growth and division in Chlamydomonas reinhardtii colonies: consistent cell cycle regulation under confinement.

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-06-23 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf104
Sing Teng Chua, Jurij Kotar, Michael Kühl, Alison G Smith, Silvia Vignolini, Pietro Cicuta
{"title":"Uncoupling growth and division in <i>Chlamydomonas reinhardtii</i> colonies: consistent cell cycle regulation under confinement.","authors":"Sing Teng Chua, Jurij Kotar, Michael Kühl, Alison G Smith, Silvia Vignolini, Pietro Cicuta","doi":"10.1093/ismeco/ycaf104","DOIUrl":null,"url":null,"abstract":"<p><p>A planar cell microcolony served as a model system to study the impact of inter-cellular crowding and cell-matrix interactions upon the cell cycle. We studied the development over several days of <i>Chlamydomonas reinhardtii</i> microcolonies, grown from single cells, using a bespoke experimental setup allowing timelapse fluorescence microscopy. Through precise cell segmentation and lineage tracking of a large systematic dataset, characterising individual cell growth and divisions, we uncovered how the external matrix influenced cell cycle and morphology. Experiments also revealed spatial heterogeneity amongst cells within colonies, providing insights into the effects of contact inhibition and micro-gradients of mass transfer. A radial propagation of ring-like pattern, characterised by variations in parent cell size, indicated complex spatio-temporal dynamics in the regulation of the cell cycle within the constrained environment. The mechanisms of commitment and mitotic sizing remained consistent within colonies under this mechanical confinement. These findings contribute to a broader understanding of how matrix immobilisation affects <i>C. reinhardtii</i>, with implications for alternative culture formats such as biofilms and hydrogel encapsulation-approaches increasingly used in biohybrid applications including biophotovoltaics and bioremediation.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf104"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A planar cell microcolony served as a model system to study the impact of inter-cellular crowding and cell-matrix interactions upon the cell cycle. We studied the development over several days of Chlamydomonas reinhardtii microcolonies, grown from single cells, using a bespoke experimental setup allowing timelapse fluorescence microscopy. Through precise cell segmentation and lineage tracking of a large systematic dataset, characterising individual cell growth and divisions, we uncovered how the external matrix influenced cell cycle and morphology. Experiments also revealed spatial heterogeneity amongst cells within colonies, providing insights into the effects of contact inhibition and micro-gradients of mass transfer. A radial propagation of ring-like pattern, characterised by variations in parent cell size, indicated complex spatio-temporal dynamics in the regulation of the cell cycle within the constrained environment. The mechanisms of commitment and mitotic sizing remained consistent within colonies under this mechanical confinement. These findings contribute to a broader understanding of how matrix immobilisation affects C. reinhardtii, with implications for alternative culture formats such as biofilms and hydrogel encapsulation-approaches increasingly used in biohybrid applications including biophotovoltaics and bioremediation.

Abstract Image

Abstract Image

Abstract Image

莱茵衣藻菌落的非偶联生长和分裂:禁闭条件下一致的细胞周期调控。
以平面细胞微群为模型系统,研究细胞间拥挤和细胞-基质相互作用对细胞周期的影响。我们研究了莱茵衣藻在几天内的发展,从单细胞生长的微菌落,使用一个定制的实验设置,允许延时荧光显微镜。通过对大型系统数据集的精确细胞分割和谱系跟踪,表征单个细胞的生长和分裂,我们揭示了外部基质如何影响细胞周期和形态。实验还揭示了菌落内细胞间的空间异质性,为接触抑制和传质微梯度的影响提供了见解。以亲本细胞大小变化为特征的环状径向传播表明,在受限环境下,细胞周期的调节具有复杂的时空动态。在这种机械约束下,寄存机制和有丝分裂大小在菌落内保持一致。这些发现有助于更广泛地了解基质固定化如何影响莱茵梭菌,并对生物膜和水凝胶包封等替代培养形式产生影响,这些方法越来越多地用于生物杂交应用,包括生物光伏和生物修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信