Silvia Seoni, Patrick Segers, Simeon Beeckman, Massimo Salvi, Marco Romanelli, Smriti Badhwar, Rosa Maria Bruno, Yanlu Li, Soren Aasmul, Nilesh Madhu, Filippo Molinari, Umberto Morbiducci
{"title":"Real-time beat-to-beat pulse wave velocity estimation: a quality-driven approach using laser Doppler vibrometry.","authors":"Silvia Seoni, Patrick Segers, Simeon Beeckman, Massimo Salvi, Marco Romanelli, Smriti Badhwar, Rosa Maria Bruno, Yanlu Li, Soren Aasmul, Nilesh Madhu, Filippo Molinari, Umberto Morbiducci","doi":"10.1007/s11517-025-03417-8","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial stiffness, a key cardiovascular risk marker, is typically assessed via carotid-femoral pulse wave velocity (cf-PWV), the gold-standard method. In this study, we introduce CAPE (Continuous Automatic PWV Estimation), an innovative framework for near real-time cf-PWV estimation based on beat-to-beat analysis of laser-Doppler vibrometry (LDV) signals. CAPE integrates automatic fiducial point detection, systematic signal quality control, and a cross-channel strategy to provide a highly reliable assessment of cf-PWV. The framework was evaluated using LDV signals acquired from 100 patients with mild to moderate essential hypertension, using a multichannel laser vibrometry system. CAPE calculates cf-PWV as the ratio of carotid-femoral distance to pulse transit time (PTT), which is the delay between carotid and femoral fiducial points. These points are detected using template-matching on the second derivative of LDV displacement signals. Signal quality in CAPE is ensured through an integrated quality assessment based on the number of automatically detected carotid-femoral peaks, which assigns confidence scores (acceptable or excellent) to the PWV measurements. When validated against the gold-standard applanation tonometry, CAPE achieved a mean bias of 0.25 ± 0.77 m/s, demonstrating high reliability and precision. The optimized framework estimates cf-PWV in 3 s, making CAPE ideal for clinical applications requiring real-time cardiovascular assessment.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03417-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Arterial stiffness, a key cardiovascular risk marker, is typically assessed via carotid-femoral pulse wave velocity (cf-PWV), the gold-standard method. In this study, we introduce CAPE (Continuous Automatic PWV Estimation), an innovative framework for near real-time cf-PWV estimation based on beat-to-beat analysis of laser-Doppler vibrometry (LDV) signals. CAPE integrates automatic fiducial point detection, systematic signal quality control, and a cross-channel strategy to provide a highly reliable assessment of cf-PWV. The framework was evaluated using LDV signals acquired from 100 patients with mild to moderate essential hypertension, using a multichannel laser vibrometry system. CAPE calculates cf-PWV as the ratio of carotid-femoral distance to pulse transit time (PTT), which is the delay between carotid and femoral fiducial points. These points are detected using template-matching on the second derivative of LDV displacement signals. Signal quality in CAPE is ensured through an integrated quality assessment based on the number of automatically detected carotid-femoral peaks, which assigns confidence scores (acceptable or excellent) to the PWV measurements. When validated against the gold-standard applanation tonometry, CAPE achieved a mean bias of 0.25 ± 0.77 m/s, demonstrating high reliability and precision. The optimized framework estimates cf-PWV in 3 s, making CAPE ideal for clinical applications requiring real-time cardiovascular assessment.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).