Aberrant S-nitrosylation in the TCA cycle contributes to mitochondrial dysfunction, energy compromise, and synapse loss in neurodegenerative diseases.

IF 6.9 2区 医学 Q1 CLINICAL NEUROLOGY
Tomohiro Nakamura, Anamika Sharma, Stuart A Lipton
{"title":"Aberrant S-nitrosylation in the TCA cycle contributes to mitochondrial dysfunction, energy compromise, and synapse loss in neurodegenerative diseases.","authors":"Tomohiro Nakamura, Anamika Sharma, Stuart A Lipton","doi":"10.1016/j.neurot.2025.e00708","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal synaptic activity relies heavily on mitochondrial energy production, as synaptic transmission requires substantial ATP. Accordingly, mitochondrial dysfunction represents a key underlying factor in synaptic loss that strongly correlates with cognitive decline in Alzheimer's disease and other neurocognitive disorders. Increasing evidence suggests that elevated nitro-oxidative stress impairs mitochondrial bioenergetic function, leading to synaptic degeneration. In this review, we highlight the pathophysiological roles of nitric oxide (NO)-dependent posttranslational modifications (PTMs), particularly S-nitrosylation of cysteine residues, and their impact on mitochondrial metabolism. We focus on the pathological S-nitrosylation of tricarboxylic acid cycle enzymes, particularly α-ketoglutarate dehydrogenase, as well as electron transport chain proteins. This aberrant PTM disrupts mitochondrial energy production. Additionally, we discuss the consequences of aberrant protein S-nitrosylation on mitochondrial dynamics and mitophagy, further contributing to mitochondrial dysfunction and synapse loss. Finally, we examine current strategies to ameliorate S-nitrosylation-mediated mitochondrial dysfunction in preclinical models of neurodegenerative diseases and explore future directions for developing neurotherapeutics aimed at restoring mitochondrial metabolism in the context of nitro-oxidative stress.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00708"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal synaptic activity relies heavily on mitochondrial energy production, as synaptic transmission requires substantial ATP. Accordingly, mitochondrial dysfunction represents a key underlying factor in synaptic loss that strongly correlates with cognitive decline in Alzheimer's disease and other neurocognitive disorders. Increasing evidence suggests that elevated nitro-oxidative stress impairs mitochondrial bioenergetic function, leading to synaptic degeneration. In this review, we highlight the pathophysiological roles of nitric oxide (NO)-dependent posttranslational modifications (PTMs), particularly S-nitrosylation of cysteine residues, and their impact on mitochondrial metabolism. We focus on the pathological S-nitrosylation of tricarboxylic acid cycle enzymes, particularly α-ketoglutarate dehydrogenase, as well as electron transport chain proteins. This aberrant PTM disrupts mitochondrial energy production. Additionally, we discuss the consequences of aberrant protein S-nitrosylation on mitochondrial dynamics and mitophagy, further contributing to mitochondrial dysfunction and synapse loss. Finally, we examine current strategies to ameliorate S-nitrosylation-mediated mitochondrial dysfunction in preclinical models of neurodegenerative diseases and explore future directions for developing neurotherapeutics aimed at restoring mitochondrial metabolism in the context of nitro-oxidative stress.

在神经退行性疾病中,TCA循环中的异常s -亚硝基化有助于线粒体功能障碍、能量损害和突触丧失。
神经元突触活动很大程度上依赖于线粒体能量的产生,因为突触传递需要大量的ATP。因此,线粒体功能障碍是突触丧失的一个关键潜在因素,而突触丧失与阿尔茨海默病和其他神经认知障碍的认知能力下降密切相关。越来越多的证据表明,升高的氮氧化应激损害线粒体的生物能量功能,导致突触变性。在这篇综述中,我们强调了一氧化氮(NO)依赖的翻译后修饰(PTMs)的病理生理作用,特别是半胱氨酸残基的s -亚硝基化,以及它们对线粒体代谢的影响。我们专注于三羧酸循环酶的病理s -亚硝基化,特别是α-酮戊二酸脱氢酶,以及电子传递链蛋白。这种异常的PTM破坏了线粒体的能量产生。此外,我们讨论了异常蛋白s -亚硝基化对线粒体动力学和线粒体自噬的影响,进一步导致线粒体功能障碍和突触丢失。最后,我们研究了目前在神经退行性疾病临床前模型中改善s -亚硝基化介导的线粒体功能障碍的策略,并探索了在硝基氧化应激背景下恢复线粒体代谢的神经疗法的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信