Luisa Foco, Marzia De Bortoli, Fabiola Del Greco M, Laura S Frommelt, Chiara Volani, Diana A Riekschnitz, Benedetta M Motta, Christian Fuchsberger, Thomas Delerue, Uwe Völker, Tianxiao Huan, Martin Gögele, Juliane Winkelmann, Marcus Dörr, Daniel Levy, Melanie Waldenberger, Alexander Teumer, Peter P Pramstaller, Alessandra Rossini, Cristian Pattaro
{"title":"Genomic and molecular evidence that the LncRNA DSP-AS1 modulates desmoplakin expression.","authors":"Luisa Foco, Marzia De Bortoli, Fabiola Del Greco M, Laura S Frommelt, Chiara Volani, Diana A Riekschnitz, Benedetta M Motta, Christian Fuchsberger, Thomas Delerue, Uwe Völker, Tianxiao Huan, Martin Gögele, Juliane Winkelmann, Marcus Dörr, Daniel Levy, Melanie Waldenberger, Alexander Teumer, Peter P Pramstaller, Alessandra Rossini, Cristian Pattaro","doi":"10.1007/s00439-025-02761-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac desmosomes are specialized cell junctions responsible for cardiomyocytes mechanical coupling. Mutation in desmosomal genes cause autosomal dominant and recessive familial arrhythmogenic cardiomyopathy. Motivated by evidence that Mendelian diseases share genetic architecture with common complex traits, we assessed whether common variants in any desmosomal gene were associated with cardiac conduction traits in the general population. We analysed data of N = 4342 Cooperative Health Research in South Tyrol (CHRIS) study participants. We tested associations between genotype imputed variants covering the five desmosomal genes Desmoplakin (DSP), junction plakoglobin (JUP), plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmocollin 2 (DSC2), and P-wave, PR, QRS, and QT electrocardiographic intervals, using linear mixed models. Functional annotation and interrogation of publicly available genome-wide association study resources implicated potential connection with antisense long non-coding RNAs (lncRNAs), DNA methylation sites, and complex traits. Causality was tested via two-sample Mendelian randomization (MR) analysis and validated with functional in vitro follow-up in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). DSP variant rs2744389 was associated with QRS (P = 3.5 × 10<sup>-6</sup>), with replication in the Microisolates in South Tyrol (MICROS) study (n = 636; P = 0.010). Observing that rs2744389 was associated with DSP-AS1 antisense lncRNA but not with DSP expression in multiple Genotype-Tissue Expression (GTEx) v8 tissues, we conducted two-sample Mendelian randomization analyses that identified causal effects of DSP-AS1 on DSP expression (P = 6.33 × 10<sup>-5</sup>; colocalization posterior probability = 0.91) and QRS (P = 0.015). In hiPSC-CMs, DSP-AS1 expression downregulation through a specific GapmerR matching sequence led to significant DSP upregulation at both mRNA and protein levels. The evidence that DSP-AS1 has a regulatory role on DSP opens the venue for further investigations on DSP-AS1's therapeutic potential for conditions caused by reduced desmoplakin production.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"843-860"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-025-02761-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac desmosomes are specialized cell junctions responsible for cardiomyocytes mechanical coupling. Mutation in desmosomal genes cause autosomal dominant and recessive familial arrhythmogenic cardiomyopathy. Motivated by evidence that Mendelian diseases share genetic architecture with common complex traits, we assessed whether common variants in any desmosomal gene were associated with cardiac conduction traits in the general population. We analysed data of N = 4342 Cooperative Health Research in South Tyrol (CHRIS) study participants. We tested associations between genotype imputed variants covering the five desmosomal genes Desmoplakin (DSP), junction plakoglobin (JUP), plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmocollin 2 (DSC2), and P-wave, PR, QRS, and QT electrocardiographic intervals, using linear mixed models. Functional annotation and interrogation of publicly available genome-wide association study resources implicated potential connection with antisense long non-coding RNAs (lncRNAs), DNA methylation sites, and complex traits. Causality was tested via two-sample Mendelian randomization (MR) analysis and validated with functional in vitro follow-up in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). DSP variant rs2744389 was associated with QRS (P = 3.5 × 10-6), with replication in the Microisolates in South Tyrol (MICROS) study (n = 636; P = 0.010). Observing that rs2744389 was associated with DSP-AS1 antisense lncRNA but not with DSP expression in multiple Genotype-Tissue Expression (GTEx) v8 tissues, we conducted two-sample Mendelian randomization analyses that identified causal effects of DSP-AS1 on DSP expression (P = 6.33 × 10-5; colocalization posterior probability = 0.91) and QRS (P = 0.015). In hiPSC-CMs, DSP-AS1 expression downregulation through a specific GapmerR matching sequence led to significant DSP upregulation at both mRNA and protein levels. The evidence that DSP-AS1 has a regulatory role on DSP opens the venue for further investigations on DSP-AS1's therapeutic potential for conditions caused by reduced desmoplakin production.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.