Mohamed S Nafie, Abdelghafar M Abu-Elsaoud, Mohamed K Diab
{"title":"A comprehensive review on computational metabolomics: Advancing multiscale analysis through <i>in-silico</i> approaches.","authors":"Mohamed S Nafie, Abdelghafar M Abu-Elsaoud, Mohamed K Diab","doi":"10.1016/j.csbj.2025.07.016","DOIUrl":null,"url":null,"abstract":"<p><p>Computational metabolomics will be established in drug discovery and research on complex biological networks. This field of research enhances the detection of metabolic biomarkers and the prediction of molecular interactions by combining multiscale analysis with <i>in silico</i> and molecular docking methods. These include nuclear magnetic resonance, mass spectrometry, and innovative bioinformatics, which enable the accurate generation and characterization of metabolomes. Molecular docking is a crucial tool for simulating the interaction between ligands and receptors, thereby facilitating the identification of potential therapeutics. It also discusses the potential of metabolomics to inform drug modes of action, from pharmacokinetics to forecasting toxicity, thereby streamlining drug development pipelines. We highlight applications in anticancer, antimicrobial, and antiviral drug discovery and explain how these computational models can accelerate target validation and enhance the accuracy of therapeutic strategies. In addition, this review addresses the current challenges and future directions for computational techniques in conjunction with experimental data to advance personalized medicine. In conclusion, this review aims to highlight the prospective approaches of computational metabolomics and molecular docking that identify evolutionary adaptive metabolisms of multiscale biological systems through their synergistic utilization to overcome the key hurdles involved in both drug discovery and metabolomic research.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3191-3215"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computational metabolomics will be established in drug discovery and research on complex biological networks. This field of research enhances the detection of metabolic biomarkers and the prediction of molecular interactions by combining multiscale analysis with in silico and molecular docking methods. These include nuclear magnetic resonance, mass spectrometry, and innovative bioinformatics, which enable the accurate generation and characterization of metabolomes. Molecular docking is a crucial tool for simulating the interaction between ligands and receptors, thereby facilitating the identification of potential therapeutics. It also discusses the potential of metabolomics to inform drug modes of action, from pharmacokinetics to forecasting toxicity, thereby streamlining drug development pipelines. We highlight applications in anticancer, antimicrobial, and antiviral drug discovery and explain how these computational models can accelerate target validation and enhance the accuracy of therapeutic strategies. In addition, this review addresses the current challenges and future directions for computational techniques in conjunction with experimental data to advance personalized medicine. In conclusion, this review aims to highlight the prospective approaches of computational metabolomics and molecular docking that identify evolutionary adaptive metabolisms of multiscale biological systems through their synergistic utilization to overcome the key hurdles involved in both drug discovery and metabolomic research.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology