The P132H mutation of SARS-CoV-2 NSP5 relieves its inhibition on interferon-β activation via blocking MAVS degradation.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuxin Zhang, Tong-Yun Wang, Huihui Yan, Zhoule Guo, Zhonghao Lian, Hailan Yao, Shuofeng Yuan, Xing-Yi Ge, Ye Qiu
{"title":"The P132H mutation of SARS-CoV-2 NSP5 relieves its inhibition on interferon-β activation via blocking MAVS degradation.","authors":"Yuxin Zhang, Tong-Yun Wang, Huihui Yan, Zhoule Guo, Zhonghao Lian, Hailan Yao, Shuofeng Yuan, Xing-Yi Ge, Ye Qiu","doi":"10.1007/s00018-025-05822-6","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important transition in the epidemic of coronavirus disease 2019 (COVID-19). Compared with other SARS-CoV-2 variants, Omicron and its subvariants exhibit decreased pathogenicity, thus contributing to the moderation of the epidemic. However, the mechanism underlying such changes is not fully understood. NSP5 is a SARS-CoV-2-encoded protease that counteracts antiviral immunity, and the P132H mutation of NSP5 is present exclusively in Omicron and its subvariants. In this study, we found that this mutation solely relieved cytopathogenicity and reduced the viral replication during SARS-CoV-2 infection. Further studies suggested that P132H blocked the NSP5-mediated degradation of MAVS by impairing the K136-linked ubiquitination of MAVS, thus restoring the IFN-β activation inhibited by NSP5. Structural analysis in silico suggested that P132H disrupted multiple hydrogen bonds between NSP5 and UbcH5b, an E2 ubiquitin-conjugating enzyme required for K136 ubiquitination. In summary, our results provide a potential mechanism explaining the decreased pathogenicity of the Omicron variant of SARS-CoV-2.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"293"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05822-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important transition in the epidemic of coronavirus disease 2019 (COVID-19). Compared with other SARS-CoV-2 variants, Omicron and its subvariants exhibit decreased pathogenicity, thus contributing to the moderation of the epidemic. However, the mechanism underlying such changes is not fully understood. NSP5 is a SARS-CoV-2-encoded protease that counteracts antiviral immunity, and the P132H mutation of NSP5 is present exclusively in Omicron and its subvariants. In this study, we found that this mutation solely relieved cytopathogenicity and reduced the viral replication during SARS-CoV-2 infection. Further studies suggested that P132H blocked the NSP5-mediated degradation of MAVS by impairing the K136-linked ubiquitination of MAVS, thus restoring the IFN-β activation inhibited by NSP5. Structural analysis in silico suggested that P132H disrupted multiple hydrogen bonds between NSP5 and UbcH5b, an E2 ubiquitin-conjugating enzyme required for K136 ubiquitination. In summary, our results provide a potential mechanism explaining the decreased pathogenicity of the Omicron variant of SARS-CoV-2.

SARS-CoV-2 NSP5的P132H突变通过阻断MAVS降解解除了对干扰素-β激活的抑制。
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)欧米克隆变异的流行是2019冠状病毒病(COVID-19)流行的一个重要转变。与其他SARS-CoV-2变异体相比,Omicron及其亚变异体的致病性降低,有助于减缓疫情。然而,这种变化背后的机制尚不完全清楚。NSP5是一种sars - cov -2编码的蛋白酶,可抵消抗病毒免疫,NSP5的P132H突变仅存在于Omicron及其亚变体中。在这项研究中,我们发现这种突变在SARS-CoV-2感染期间完全减轻了细胞致病性并减少了病毒复制。进一步的研究表明,P132H通过破坏MAVS的k136连锁泛素化来阻断NSP5介导的MAVS降解,从而恢复被NSP5抑制的IFN-β活化。计算机结构分析表明P132H破坏了NSP5和UbcH5b之间的多个氢键,UbcH5b是K136泛素化所需的E2泛素结合酶。总之,我们的研究结果提供了解释SARS-CoV-2的Omicron变体致病性降低的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信