{"title":"Drug-target interaction prediction based on graph convolutional autoencoder with dynamic weighting residual GCN.","authors":"Ming Zeng, Min Wang, Fuqiang Xie, Zhiwei Ji","doi":"10.1186/s12859-025-06198-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The exploration of drug-target interactions (DTIs) is a critical step in drug discovery and drug repurposing. Recently, network-based methods have emerged as a prominent research area for predicting DTIs. These methods excel by extracting both topological and feature information from DTIs networks, thereby achieving superior DTIs prediction performance. However, the majority of existing GCN-based methods utilize shallow graph neural networks, which are incapable of extracting higher-level semantic information. Additionally, the current training of models lacks an effective guiding mechanism, leading to the insufficient improvement of network's representation capabilities.</p><p><strong>Results: </strong>In this paper, we propose a graph convolutional autoencoder model, named DDGAE, for DTIs prediction. We develop a DWR-GCN module, which incorporates dynamic weighting graph convolution with residual connection, to improve the representation capability for DTI heterogeneous networks. Further, to improve the learning efficiency of the model, we devise a dual self-supervised joint training mechanism. Specifically, this mechanism integrates DWR-GCN and a graph convolutional autoencoder into a cohesive system, enhancing both the learning performance and stability of DDGAE.</p><p><strong>Conclusion: </strong>Experimental results show that DDGAE significantly outperforms several SOTA models in DTIs prediction, achieving optimal performance and the reliability of our method is verified by case study.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"200"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06198-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The exploration of drug-target interactions (DTIs) is a critical step in drug discovery and drug repurposing. Recently, network-based methods have emerged as a prominent research area for predicting DTIs. These methods excel by extracting both topological and feature information from DTIs networks, thereby achieving superior DTIs prediction performance. However, the majority of existing GCN-based methods utilize shallow graph neural networks, which are incapable of extracting higher-level semantic information. Additionally, the current training of models lacks an effective guiding mechanism, leading to the insufficient improvement of network's representation capabilities.
Results: In this paper, we propose a graph convolutional autoencoder model, named DDGAE, for DTIs prediction. We develop a DWR-GCN module, which incorporates dynamic weighting graph convolution with residual connection, to improve the representation capability for DTI heterogeneous networks. Further, to improve the learning efficiency of the model, we devise a dual self-supervised joint training mechanism. Specifically, this mechanism integrates DWR-GCN and a graph convolutional autoencoder into a cohesive system, enhancing both the learning performance and stability of DDGAE.
Conclusion: Experimental results show that DDGAE significantly outperforms several SOTA models in DTIs prediction, achieving optimal performance and the reliability of our method is verified by case study.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.