SynchroSep-MS: Parallel LC Separations for Multiplexed Proteomics

IF 2.7 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Noah M. Lancaster, Li-Yu Chen, Bingnan Zhao, Benton J. Anderson, Mitchell D. Probasco, Vadim Demichev, Daniel A. Polasky, Alexey I. Nesvizhskii, Katherine A. Overmyer, Scott T. Quarmby and Joshua J. Coon*, 
{"title":"SynchroSep-MS: Parallel LC Separations for Multiplexed Proteomics","authors":"Noah M. Lancaster,&nbsp;Li-Yu Chen,&nbsp;Bingnan Zhao,&nbsp;Benton J. Anderson,&nbsp;Mitchell D. Probasco,&nbsp;Vadim Demichev,&nbsp;Daniel A. Polasky,&nbsp;Alexey I. Nesvizhskii,&nbsp;Katherine A. Overmyer,&nbsp;Scott T. Quarmby and Joshua J. Coon*,&nbsp;","doi":"10.1021/jasms.5c00207","DOIUrl":null,"url":null,"abstract":"<p >Achieving high throughput remains a challenge in MS-based proteomics for large-scale applications. We introduce SynchroSep-MS, a novel method for parallelized, label-free proteome analysis that leverages the rapid acquisition speed of modern mass spectrometers. This approach employs multiple liquid chromatography columns, each with an independent sample, simultaneously introduced into a single mass spectrometer inlet. A precisely controlled retention time offset between sample injections creates distinct elution profiles, facilitating unambiguous analyte assignment. We modified the DIA-NN workflow to effectively process these unique parallelized data, accounting for retention time offsets. Using a dual-column setup with mouse brain peptides, SynchroSep-MS detected approximately 16,700 unique protein groups, nearly doubling the peptide information obtained from a conventional single proteome analysis. The method demonstrated excellent precision and reproducibility (median protein %RSDs less than 4%) and high quantitative linearity (median R<sup>2</sup> greater than 0.96) with minimal matrix interference. SynchroSep-MS represents a new paradigm for data collection and the first example of label-free multiplexed proteome analysis via parallel LC separations, offering a direct strategy to accelerate throughput for demanding applications such as large-scale clinical cohorts and single-cell analyses without compromising peak capacity or causing ionization suppression.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 9","pages":"1979–1987"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.5c00207","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high throughput remains a challenge in MS-based proteomics for large-scale applications. We introduce SynchroSep-MS, a novel method for parallelized, label-free proteome analysis that leverages the rapid acquisition speed of modern mass spectrometers. This approach employs multiple liquid chromatography columns, each with an independent sample, simultaneously introduced into a single mass spectrometer inlet. A precisely controlled retention time offset between sample injections creates distinct elution profiles, facilitating unambiguous analyte assignment. We modified the DIA-NN workflow to effectively process these unique parallelized data, accounting for retention time offsets. Using a dual-column setup with mouse brain peptides, SynchroSep-MS detected approximately 16,700 unique protein groups, nearly doubling the peptide information obtained from a conventional single proteome analysis. The method demonstrated excellent precision and reproducibility (median protein %RSDs less than 4%) and high quantitative linearity (median R2 greater than 0.96) with minimal matrix interference. SynchroSep-MS represents a new paradigm for data collection and the first example of label-free multiplexed proteome analysis via parallel LC separations, offering a direct strategy to accelerate throughput for demanding applications such as large-scale clinical cohorts and single-cell analyses without compromising peak capacity or causing ionization suppression.

Abstract Image

SynchroSep-MS:多重蛋白质组学的平行LC分离。
在基于质谱的蛋白质组学大规模应用中,实现高通量仍然是一个挑战。我们介绍了SynchroSep-MS,这是一种新的方法,用于并行化,无标记蛋白质组分析,利用现代质谱仪的快速获取速度。这种方法采用多个液相色谱柱,每个柱都有一个独立的样品,同时引入一个质谱仪入口。精确控制样品注射之间的保留时间偏移创建不同的洗脱剖面,促进明确的分析物分配。我们修改了DIA-NN工作流,以有效地处理这些独特的并行数据,并考虑保留时间偏移。SynchroSep-MS使用双柱设置小鼠脑肽,检测到大约16,700个独特的蛋白质组,几乎是传统单一蛋白质组分析获得的肽信息的两倍。该方法精密度高,重现性好(中位蛋白% rsd < 4%),定量线性高(中位R2 > 0.96),基质干扰最小。SynchroSep-MS代表了数据收集的新范例,也是通过平行LC分离进行无标记多路蛋白质组分析的第一个例子,提供了一种直接的策略来加速要求苛刻的应用,如大规模临床队列和单细胞分析,而不会影响峰值容量或引起电离抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信