Catalytic Photooxygenation Demonstrates Therapeutic Efficacy in Transthyretin Amyloidosis

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mina Yamane, Hiroki Umeda, Moe Toyobe, Atsushi Iwai, Kuraudo Ishihara, Genki Kudo, Harunobu Mitsunuma, Yukiko Hori, Taisuke Tomita, Mineyuki Mizuguchi, Masamitsu Okada, Mitsuharu Ueda, Yukio Ando, Shigehiro A. Kawashima, Youhei Sohma, Hironori Kaji, Takatsugu Hirokawa, Kunitoshi Yamanaka* and Motomu Kanai*, 
{"title":"Catalytic Photooxygenation Demonstrates Therapeutic Efficacy in Transthyretin Amyloidosis","authors":"Mina Yamane,&nbsp;Hiroki Umeda,&nbsp;Moe Toyobe,&nbsp;Atsushi Iwai,&nbsp;Kuraudo Ishihara,&nbsp;Genki Kudo,&nbsp;Harunobu Mitsunuma,&nbsp;Yukiko Hori,&nbsp;Taisuke Tomita,&nbsp;Mineyuki Mizuguchi,&nbsp;Masamitsu Okada,&nbsp;Mitsuharu Ueda,&nbsp;Yukio Ando,&nbsp;Shigehiro A. Kawashima,&nbsp;Youhei Sohma,&nbsp;Hironori Kaji,&nbsp;Takatsugu Hirokawa,&nbsp;Kunitoshi Yamanaka* and Motomu Kanai*,&nbsp;","doi":"10.1021/jacs.5c06205","DOIUrl":null,"url":null,"abstract":"<p >The escalating global trend of aging populations has brought attention to the rising prevalence of late-onset amyloid disorders. Among them, amyloid transthyretin (ATTR) amyloidosis presents a growing area of unmet medical needs. While current treatment modalities have demonstrated efficacy in preventing or delaying amyloid generation, methodology to selectively modify and neutralize existing amyloid burdens remains inadequately addressed, leaving the fundamental irreversibility and hence the fatality of these conditions, a long-standing medical challenge. Here, we report the first demonstration of therapeutic efficacy in ATTR amyloidosis via dynamic control of ATTR aggregation and toxicity, enabled by small-molecule organophotocatalysis. Selective incorporation of hydrophilic oxygen atoms into the hydrophobic amyloid core reshapes the aggregation landscape, neutralizing proteotoxicity, and mitigating cellular damage. Additionally, this targeted covalent modification significantly reduces in vivo ROS levels, correlating with the observed therapeutic effects in <i>Caenorhabditis elegans</i>, the only experimental model replicating key clinical manifestations of the disease. Docking simulations elucidated the molecular basis of catalyst performance, providing the foundational blueprint for amyloid-neutralizing organophotocatalysis. Collectively, this study provides a scalable approach to overcoming a persistent barrier in amyloidosis therapy.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 32","pages":"28860–28874"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating global trend of aging populations has brought attention to the rising prevalence of late-onset amyloid disorders. Among them, amyloid transthyretin (ATTR) amyloidosis presents a growing area of unmet medical needs. While current treatment modalities have demonstrated efficacy in preventing or delaying amyloid generation, methodology to selectively modify and neutralize existing amyloid burdens remains inadequately addressed, leaving the fundamental irreversibility and hence the fatality of these conditions, a long-standing medical challenge. Here, we report the first demonstration of therapeutic efficacy in ATTR amyloidosis via dynamic control of ATTR aggregation and toxicity, enabled by small-molecule organophotocatalysis. Selective incorporation of hydrophilic oxygen atoms into the hydrophobic amyloid core reshapes the aggregation landscape, neutralizing proteotoxicity, and mitigating cellular damage. Additionally, this targeted covalent modification significantly reduces in vivo ROS levels, correlating with the observed therapeutic effects in Caenorhabditis elegans, the only experimental model replicating key clinical manifestations of the disease. Docking simulations elucidated the molecular basis of catalyst performance, providing the foundational blueprint for amyloid-neutralizing organophotocatalysis. Collectively, this study provides a scalable approach to overcoming a persistent barrier in amyloidosis therapy.

Abstract Image

催化光氧合治疗甲状腺素转蛋白淀粉样变性的疗效。
全球人口老龄化趋势的加剧引起了人们对晚发性淀粉样蛋白疾病患病率上升的关注。其中,淀粉样转甲状腺素(ATTR)淀粉样变性呈现出越来越多的未满足医疗需求的领域。虽然目前的治疗方式已经证明在预防或延缓淀粉样蛋白生成方面有效,但选择性修饰和中和现有淀粉样蛋白负担的方法仍然没有得到充分解决,导致这些疾病的根本不可逆性和致死率,这是一个长期存在的医学挑战。在这里,我们首次报道了通过动态控制ATTR聚集和毒性,通过小分子有机光催化实现ATTR淀粉样变性的治疗效果。亲水性氧原子选择性地结合到疏水性淀粉样蛋白核心中,重塑了聚集景观,中和了蛋白质毒性,减轻了细胞损伤。此外,这种靶向共价修饰显著降低了体内ROS水平,这与在秀丽隐杆线虫中观察到的治疗效果有关,秀丽隐杆线虫是唯一能复制该疾病关键临床表现的实验模型。对接模拟阐明了催化剂性能的分子基础,为淀粉样蛋白中和有机光催化提供了基础蓝图。总的来说,这项研究提供了一种可扩展的方法来克服淀粉样变性治疗中的持续障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信