Quantum-Enhanced Soil Nutrient Estimation Exploiting Hyperspectral Data With Quantum Fourier Transform

IF 4.4
Anand R
{"title":"Quantum-Enhanced Soil Nutrient Estimation Exploiting Hyperspectral Data With Quantum Fourier Transform","authors":"Anand R","doi":"10.1109/LGRS.2025.3591445","DOIUrl":null,"url":null,"abstract":"Accurate prediction of soil nutrient content is essential for precision agriculture and sustainable land management. Various soil properties, including nitrogen (N), organic carbon (OC), pH, phosphorus (P), and electrical conductivity (EC), exhibit complex oscillatory and quasi-periodic behaviors influenced by environmental cycles, moisture variation, and biological activity. In this study, we propose a novel Fourier quantum convolution (FQC) framework augmented with a quantum entangler circuit to extract robust spectral-domain features from soil spectral data. The proposed FQC entangler circuit processes local spectral patches through parameterized quantum gates and entangling operations, facilitating the extraction of amplitude and phase information while capturing interband correlations. The resulting Fourier quantum features serve as effective inputs to regression models for estimating soil nutrient content. The experimental results demonstrate that the FQC-transformed features significantly enhance the prediction accuracy of N, OC, pH, P, and EC compared to the conventional spectral and statistical features. This study underscores the potential of quantum-inspired feature extraction for advancing digital soil analysis and precision agriculture applications. For instance, on the phosphorus dataset, FQC achieved an RMSE of 3.89 and an <inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula> of 0.178, outperforming other quantum circuits. Similarly, for the pH dataset, FQC yielded the lowest RMSE (1.16) and MAPE (13.04%), indicating superior generalization and predictive accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11088240/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of soil nutrient content is essential for precision agriculture and sustainable land management. Various soil properties, including nitrogen (N), organic carbon (OC), pH, phosphorus (P), and electrical conductivity (EC), exhibit complex oscillatory and quasi-periodic behaviors influenced by environmental cycles, moisture variation, and biological activity. In this study, we propose a novel Fourier quantum convolution (FQC) framework augmented with a quantum entangler circuit to extract robust spectral-domain features from soil spectral data. The proposed FQC entangler circuit processes local spectral patches through parameterized quantum gates and entangling operations, facilitating the extraction of amplitude and phase information while capturing interband correlations. The resulting Fourier quantum features serve as effective inputs to regression models for estimating soil nutrient content. The experimental results demonstrate that the FQC-transformed features significantly enhance the prediction accuracy of N, OC, pH, P, and EC compared to the conventional spectral and statistical features. This study underscores the potential of quantum-inspired feature extraction for advancing digital soil analysis and precision agriculture applications. For instance, on the phosphorus dataset, FQC achieved an RMSE of 3.89 and an $R^{2}$ of 0.178, outperforming other quantum circuits. Similarly, for the pH dataset, FQC yielded the lowest RMSE (1.16) and MAPE (13.04%), indicating superior generalization and predictive accuracy.
利用量子傅立叶变换的高光谱数据进行量子增强土壤养分估算
准确预测土壤养分含量对精准农业和土地可持续管理至关重要。土壤的各种特性,包括氮(N)、有机碳(OC)、pH、磷(P)和电导率(EC),在环境循环、水分变化和生物活性的影响下,表现出复杂的振荡和准周期行为。在这项研究中,我们提出了一种新的傅立叶量子卷积(FQC)框架,增强了量子纠缠电路,从土壤光谱数据中提取鲁棒谱域特征。提出的FQC纠缠电路通过参数化量子门和纠缠操作处理局部频谱斑块,有利于提取振幅和相位信息,同时捕获带间相关性。由此产生的傅立叶量子特征作为回归模型的有效输入,用于估计土壤养分含量。实验结果表明,与传统的光谱特征和统计特征相比,fqc变换特征显著提高了N、OC、pH、P和EC的预测精度。这项研究强调了量子特征提取在推进数字土壤分析和精准农业应用方面的潜力。例如,在磷数据集上,FQC实现了3.89的RMSE和0.178的$R^{2}$,优于其他量子电路。同样,对于pH数据集,FQC产生最低的RMSE(1.16)和MAPE(13.04%),表明优越的泛化和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信