Neural Conformal Inference for jump diffusion processes

IF 4 3区 经济学 Q1 ECONOMICS
Hyeong Jin Hyun, Xiao Wang
{"title":"Neural Conformal Inference for jump diffusion processes","authors":"Hyeong Jin Hyun,&nbsp;Xiao Wang","doi":"10.1016/j.jeconom.2025.106061","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian inference for jump diffusion processes (JDPs) remains challenging due to intractable transition densities and the latency of jump times and intensities. This paper introduces Neural Conformal Inference for JDPs (NCoin-JDP), a novel likelihood-free approach that leverages the power of deep neural networks (DNNs). NCoin-JDP bypasses the limitations of traditional methods by establishing a direct mapping between observed data and model parameters using a DNN. This approach eliminates the discretization errors inherent in likelihood-based methods, leading to more accurate inference. Despite the black-box nature of DNNs, we establish the asymptotic theory to quantify the approximation error of our algorithm. Additionally, we calibrate the uncertainty of our estimations using conformal prediction, providing theoretical guarantees of equivalence with the Bayesian posterior. NCoin-JDP demonstrates competitive performance compared to state-of-the-art methods. We showcase its effectiveness through numerical simulations and apply it to real-world data (S&amp;P 500 and NASDAQ, 1993–2024) to investigate the impact of COVID-19 on the US economy. All numerical studies are reproducible in <span><span>https://github.com/anonymous1116/NCoin-JDP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106061"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001150","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian inference for jump diffusion processes (JDPs) remains challenging due to intractable transition densities and the latency of jump times and intensities. This paper introduces Neural Conformal Inference for JDPs (NCoin-JDP), a novel likelihood-free approach that leverages the power of deep neural networks (DNNs). NCoin-JDP bypasses the limitations of traditional methods by establishing a direct mapping between observed data and model parameters using a DNN. This approach eliminates the discretization errors inherent in likelihood-based methods, leading to more accurate inference. Despite the black-box nature of DNNs, we establish the asymptotic theory to quantify the approximation error of our algorithm. Additionally, we calibrate the uncertainty of our estimations using conformal prediction, providing theoretical guarantees of equivalence with the Bayesian posterior. NCoin-JDP demonstrates competitive performance compared to state-of-the-art methods. We showcase its effectiveness through numerical simulations and apply it to real-world data (S&P 500 and NASDAQ, 1993–2024) to investigate the impact of COVID-19 on the US economy. All numerical studies are reproducible in https://github.com/anonymous1116/NCoin-JDP.
跳跃扩散过程的神经保形推理
由于难以处理的跃迁密度和跃迁时间和强度的延迟,跃变扩散过程的贝叶斯推理仍然具有挑战性。本文介绍了jdp的神经共形推理(NCoin-JDP),这是一种利用深度神经网络(dnn)功能的新型无似然方法。NCoin-JDP通过使用深度神经网络在观测数据和模型参数之间建立直接映射,从而绕过了传统方法的局限性。这种方法消除了基于似然方法固有的离散化误差,导致更准确的推断。尽管深度神经网络具有黑箱性质,但我们建立了渐近理论来量化我们算法的近似误差。此外,我们使用保形预测校准估计的不确定性,提供与贝叶斯后验等效的理论保证。与最先进的方法相比,NCoin-JDP展示了具有竞争力的性能。我们通过数值模拟展示了其有效性,并将其应用于现实世界的数据(标准普尔500指数和纳斯达克指数,1993-2024年),以研究COVID-19对美国经济的影响。所有数值研究均可在https://github.com/anonymous1116/NCoin-JDP中重现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信