Emerging paradigms in the lateral and transverse organization in biological membrane and their functional implications: Connecting the dots with biomolecular simulations
{"title":"Emerging paradigms in the lateral and transverse organization in biological membrane and their functional implications: Connecting the dots with biomolecular simulations","authors":"Anand Srivastava","doi":"10.1016/j.sbi.2025.103128","DOIUrl":null,"url":null,"abstract":"<div><div>Since the publication of the first papers in the early 1990s, molecular simulation as a reliable biophysical tool in the area of membrane biophysics has come a long way. Advances in simulation algorithms, coupled with exascale computing have pushed the size and time scales of biomolecular membrane simulations to scales where connections to experiments are made with higher fidelity. When integrated with experimental data in a theoretically well-grounded manner, current biomolecular simulations are providing indispensable insights that cannot be obtained through experiments alone. Here, I summarize some recent developments where simulations have allowed a deeper understanding in membrane spatiotemporal organization. I also discuss the need for transformative method developments to meet recent breakthroughs in experimental measurements at molecular scales.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103128"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001460","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the publication of the first papers in the early 1990s, molecular simulation as a reliable biophysical tool in the area of membrane biophysics has come a long way. Advances in simulation algorithms, coupled with exascale computing have pushed the size and time scales of biomolecular membrane simulations to scales where connections to experiments are made with higher fidelity. When integrated with experimental data in a theoretically well-grounded manner, current biomolecular simulations are providing indispensable insights that cannot be obtained through experiments alone. Here, I summarize some recent developments where simulations have allowed a deeper understanding in membrane spatiotemporal organization. I also discuss the need for transformative method developments to meet recent breakthroughs in experimental measurements at molecular scales.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation