Naomi Ciano Albanese , Ignacio Del Castillo , Giulia Ragaglia , Giulia Castellano , Maria Antonietta Ajmone-Cat , Roberta De Simone , Marilena Griguoli , Laura Ricceri
{"title":"Microglia depletion in a mouse model of prenatal and postnatal immune activation","authors":"Naomi Ciano Albanese , Ignacio Del Castillo , Giulia Ragaglia , Giulia Castellano , Maria Antonietta Ajmone-Cat , Roberta De Simone , Marilena Griguoli , Laura Ricceri","doi":"10.1016/j.bbi.2025.07.018","DOIUrl":null,"url":null,"abstract":"<div><div>Risk for neurodevelopmental disorders can be related to early immune stimulations and altered brain microglial functions. Here we investigated the behavioural and electrophysiological effects of microglia depletion in a mouse model of developmental immune activation.</div><div>C57BL/6J pregnant mice were exposed on gestational day 12.5 to polyinosinic:polycytidylic acid (Poly I:C), subsequently, on postnatal day 9, offspring was further treated with lipopolysaccharide (LPS). At weaning, offspring was exposed throughout adolescence (4 weeks) to either a diet containing Colony Stimulating Factor-1 receptor inhibitor (PLX5622, PLX) to reduce microglia, or standard diet. Hence, we assessed i) explorative and anxiety-like responses, social responsiveness and cognitive abilities between 7<sup>th</sup> and 8<sup>th</sup> postnatal week; ii) synaptic transmission and neuroinflammatory and microglial molecular markers in the medial prefrontal cortex (mPFC) and hippocampus (HP) at the end of treatment (8<sup>th</sup> postnatal week).</div><div>EIA condition reduced locomotor activity and impaired discrimination between a familiar and a novel social stimulus (social novelty response) only in male mice. Also, PLX treatment selectively affected the same social novelty response in males (both saline and EIA) and in EIA females, intriguingly sparing saline females. Unexpectedly, EIA condition <em>per se</em> did not affect spontaneous excitatory and inhibitory synaptic transmission in both mPFC and HP, whereas EIA combined with PLX reduced inhibitory transmission in males (both mPFC and HP) and neuron excitability in both male and female mPFC. Interestingly, PLX had <em>per se</em> sex- and region- specific effects increasing inhibitory transmission in female mPFC and decreasing excitatory transmission in male HP.</div><div>Molecular data, beside a robust downregulation of microglia markers in PLX diet groups, also showed that EIA condition increased interleukin-6 (<em>il-6</em>) expression in EIA males in both mPFC and HP, and elevated <em>il-1β</em> levels in both sexes in mPFC and in male HP.</div><div>Overall, these findings indicate that males have an increased vulnerability to the long-term behavioural and inflammatory effects of the EIA condition, and are more likely to exhibit behavioural and electrophysiological changes in response to microglia depletion.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"129 ","pages":"Pages 935-947"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125002879","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Risk for neurodevelopmental disorders can be related to early immune stimulations and altered brain microglial functions. Here we investigated the behavioural and electrophysiological effects of microglia depletion in a mouse model of developmental immune activation.
C57BL/6J pregnant mice were exposed on gestational day 12.5 to polyinosinic:polycytidylic acid (Poly I:C), subsequently, on postnatal day 9, offspring was further treated with lipopolysaccharide (LPS). At weaning, offspring was exposed throughout adolescence (4 weeks) to either a diet containing Colony Stimulating Factor-1 receptor inhibitor (PLX5622, PLX) to reduce microglia, or standard diet. Hence, we assessed i) explorative and anxiety-like responses, social responsiveness and cognitive abilities between 7th and 8th postnatal week; ii) synaptic transmission and neuroinflammatory and microglial molecular markers in the medial prefrontal cortex (mPFC) and hippocampus (HP) at the end of treatment (8th postnatal week).
EIA condition reduced locomotor activity and impaired discrimination between a familiar and a novel social stimulus (social novelty response) only in male mice. Also, PLX treatment selectively affected the same social novelty response in males (both saline and EIA) and in EIA females, intriguingly sparing saline females. Unexpectedly, EIA condition per se did not affect spontaneous excitatory and inhibitory synaptic transmission in both mPFC and HP, whereas EIA combined with PLX reduced inhibitory transmission in males (both mPFC and HP) and neuron excitability in both male and female mPFC. Interestingly, PLX had per se sex- and region- specific effects increasing inhibitory transmission in female mPFC and decreasing excitatory transmission in male HP.
Molecular data, beside a robust downregulation of microglia markers in PLX diet groups, also showed that EIA condition increased interleukin-6 (il-6) expression in EIA males in both mPFC and HP, and elevated il-1β levels in both sexes in mPFC and in male HP.
Overall, these findings indicate that males have an increased vulnerability to the long-term behavioural and inflammatory effects of the EIA condition, and are more likely to exhibit behavioural and electrophysiological changes in response to microglia depletion.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.