Packing internally disjoint Steiner paths of modified bubble-sort networks

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Lina Zhao , Shiying Wang , Wei Feng
{"title":"Packing internally disjoint Steiner paths of modified bubble-sort networks","authors":"Lina Zhao ,&nbsp;Shiying Wang ,&nbsp;Wei Feng","doi":"10.1016/j.tcs.2025.115484","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected simple graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. For <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>, a path <em>P</em> in <em>G</em> is said to be an <em>S</em>-Steiner path (or <em>S</em>-path for short) if it connects all vertices of <em>S</em>. Two <em>S</em>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. The packing number of internally disjoint <em>S</em>-paths, denoted as <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, is the maximum number of internally disjoint <em>S</em>-paths in <em>G</em>. For an integer <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, the <em>k</em>-path connectivity of a graph <em>G</em> is defined as <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo></math></span> min<span><math><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. The modified bubble-sort graph, denoted <span><math><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, is an interconnection network topological model for multiprocessor systems. In this paper, we focus on the 3-path-connectivity of the <em>n</em>-dimensional modified bubble sort graphs. By analyzing the structural properties of <span><math><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, we determine that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>⌋</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1055 ","pages":"Article 115484"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004220","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected simple graph with vertex set V(G) and edge set E(G). For SV(G) with |S|2, a path P in G is said to be an S-Steiner path (or S-path for short) if it connects all vertices of S. Two S-paths P1 and P2 are internally disjoint if E(P1)E(P2)= and V(P1)V(P2)=S. The packing number of internally disjoint S-paths, denoted as πG(S), is the maximum number of internally disjoint S-paths in G. For an integer 2k|V(G)|, the k-path connectivity of a graph G is defined as πk(G)= min{πG(S)|SV(G) and |S|=k}. The modified bubble-sort graph, denoted MBn, is an interconnection network topological model for multiprocessor systems. In this paper, we focus on the 3-path-connectivity of the n-dimensional modified bubble sort graphs. By analyzing the structural properties of MBn, we determine that π3(MBn)=3n14 for n4.
改进气泡排序网络的内部不相交斯坦纳路径的填充
设G是一个有顶点集V(G)和边集E(G)的连通简单图。当S (P1)∩E(P2)=∅,且V(P1)∩V(P2)=S时,G中的路径P连接S的所有顶点,称其为S- steiner路径(简称S路径)。两条路径P1和P2内部不相交。对于整数2≤k≤|V(G)|,定义图G的k路径连通性为πk(G)= min{πG(S)|S≤V(G), |S|=k}。改进的气泡排序图,记作MBn,是多处理机系统的互连网络拓扑模型。本文主要研究了n维修正冒泡排序图的3路连通性。通过分析MBn的结构性质,确定当n≥4时π3(MBn)=⌊3n−14⌋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信