{"title":"Packing internally disjoint Steiner paths of modified bubble-sort networks","authors":"Lina Zhao , Shiying Wang , Wei Feng","doi":"10.1016/j.tcs.2025.115484","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected simple graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. For <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>, a path <em>P</em> in <em>G</em> is said to be an <em>S</em>-Steiner path (or <em>S</em>-path for short) if it connects all vertices of <em>S</em>. Two <em>S</em>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. The packing number of internally disjoint <em>S</em>-paths, denoted as <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, is the maximum number of internally disjoint <em>S</em>-paths in <em>G</em>. For an integer <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, the <em>k</em>-path connectivity of a graph <em>G</em> is defined as <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo></math></span> min<span><math><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. The modified bubble-sort graph, denoted <span><math><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, is an interconnection network topological model for multiprocessor systems. In this paper, we focus on the 3-path-connectivity of the <em>n</em>-dimensional modified bubble sort graphs. By analyzing the structural properties of <span><math><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, we determine that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>M</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>⌋</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1055 ","pages":"Article 115484"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004220","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a connected simple graph with vertex set and edge set . For with , a path P in G is said to be an S-Steiner path (or S-path for short) if it connects all vertices of S. Two S-paths and are internally disjoint if and . The packing number of internally disjoint S-paths, denoted as , is the maximum number of internally disjoint S-paths in G. For an integer , the k-path connectivity of a graph G is defined as min and . The modified bubble-sort graph, denoted , is an interconnection network topological model for multiprocessor systems. In this paper, we focus on the 3-path-connectivity of the n-dimensional modified bubble sort graphs. By analyzing the structural properties of , we determine that for .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.