SpaSEG: unsupervised deep learning for multi-task analysis of spatially resolved transcriptomics

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yong Bai, Xiangyu Guo, Keyin Liu, Bingjie Zheng, Yilin Wei, Yingyue Wang, Wenxi Zhang, Qiuhong Luo, Jianhua Yin, Liang Wu, Yuxiang Li, Yong Zhang, Ao Chen, Xiangdong Wang, Xun Xu, Chuanyu Liu, Xin Jin
{"title":"SpaSEG: unsupervised deep learning for multi-task analysis of spatially resolved transcriptomics","authors":"Yong Bai, Xiangyu Guo, Keyin Liu, Bingjie Zheng, Yilin Wei, Yingyue Wang, Wenxi Zhang, Qiuhong Luo, Jianhua Yin, Liang Wu, Yuxiang Li, Yong Zhang, Ao Chen, Xiangdong Wang, Xun Xu, Chuanyu Liu, Xin Jin","doi":"10.1186/s13059-025-03697-1","DOIUrl":null,"url":null,"abstract":"Spatially resolved transcriptomics (SRT) for characterizing spatial cellular heterogeneities in tissue environments requires systematic analytical approaches to elucidate gene expression variations within their physiological context. Here, we introduce SpaSEG, an unsupervised deep learning model utilizing convolutional neural networks for multiple SRT analysis tasks. Extensive evaluations across diverse SRT datasets generated by various platforms demonstrate SpaSEG’s superior robustness and efficiency compared to existing methods. In the application analysis of invasive ductal carcinoma, SpaSEG successfully unravels intratumoral heterogeneity and delivers insights into immunoregulatory mechanisms. These results highlight SpaSEG’s substantial potential for exploring tissue architectures and pathological biology.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":"230"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03697-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) for characterizing spatial cellular heterogeneities in tissue environments requires systematic analytical approaches to elucidate gene expression variations within their physiological context. Here, we introduce SpaSEG, an unsupervised deep learning model utilizing convolutional neural networks for multiple SRT analysis tasks. Extensive evaluations across diverse SRT datasets generated by various platforms demonstrate SpaSEG’s superior robustness and efficiency compared to existing methods. In the application analysis of invasive ductal carcinoma, SpaSEG successfully unravels intratumoral heterogeneity and delivers insights into immunoregulatory mechanisms. These results highlight SpaSEG’s substantial potential for exploring tissue architectures and pathological biology.
SpaSEG:用于多任务分析的无监督深度学习
空间解析转录组学(SRT)用于表征组织环境中的空间细胞异质性,需要系统的分析方法来阐明其生理背景下的基因表达变异。在这里,我们介绍了SpaSEG,一种利用卷积神经网络进行多个SRT分析任务的无监督深度学习模型。对不同平台生成的不同SRT数据集的广泛评估表明,与现有方法相比,SpaSEG具有更好的鲁棒性和效率。在浸润性导管癌的应用分析中,SpaSEG成功地揭示了肿瘤内的异质性,并提供了对免疫调节机制的见解。这些结果突出了SpaSEG在探索组织结构和病理生物学方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信