{"title":"SpaSEG: unsupervised deep learning for multi-task analysis of spatially resolved transcriptomics","authors":"Yong Bai, Xiangyu Guo, Keyin Liu, Bingjie Zheng, Yilin Wei, Yingyue Wang, Wenxi Zhang, Qiuhong Luo, Jianhua Yin, Liang Wu, Yuxiang Li, Yong Zhang, Ao Chen, Xiangdong Wang, Xun Xu, Chuanyu Liu, Xin Jin","doi":"10.1186/s13059-025-03697-1","DOIUrl":null,"url":null,"abstract":"Spatially resolved transcriptomics (SRT) for characterizing spatial cellular heterogeneities in tissue environments requires systematic analytical approaches to elucidate gene expression variations within their physiological context. Here, we introduce SpaSEG, an unsupervised deep learning model utilizing convolutional neural networks for multiple SRT analysis tasks. Extensive evaluations across diverse SRT datasets generated by various platforms demonstrate SpaSEG’s superior robustness and efficiency compared to existing methods. In the application analysis of invasive ductal carcinoma, SpaSEG successfully unravels intratumoral heterogeneity and delivers insights into immunoregulatory mechanisms. These results highlight SpaSEG’s substantial potential for exploring tissue architectures and pathological biology.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":"230"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03697-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially resolved transcriptomics (SRT) for characterizing spatial cellular heterogeneities in tissue environments requires systematic analytical approaches to elucidate gene expression variations within their physiological context. Here, we introduce SpaSEG, an unsupervised deep learning model utilizing convolutional neural networks for multiple SRT analysis tasks. Extensive evaluations across diverse SRT datasets generated by various platforms demonstrate SpaSEG’s superior robustness and efficiency compared to existing methods. In the application analysis of invasive ductal carcinoma, SpaSEG successfully unravels intratumoral heterogeneity and delivers insights into immunoregulatory mechanisms. These results highlight SpaSEG’s substantial potential for exploring tissue architectures and pathological biology.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.