Quantum entanglement control in two-spin-1/2 NMR systems through magnetic fields and temperature

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Fatemeh Khashami and Stefan Glöggler
{"title":"Quantum entanglement control in two-spin-1/2 NMR systems through magnetic fields and temperature","authors":"Fatemeh Khashami and Stefan Glöggler","doi":"10.1039/D5CP02597D","DOIUrl":null,"url":null,"abstract":"<p >We investigate quantum entanglement in two-spin-1/2 NMR systems at thermal equilibrium under external magnetic fields. We derive closed-form analytical expressions for the entanglement of the system and show how the entanglement depends on temperature and magnetic field strength, resulting in a threshold temperature beyond which entanglement vanishes. We demonstrate that at zero temperature, the system exhibits a quantum critical point, characterized by non-analytic behavior in the measure of entanglement. We further develop analytical criterion for level crossing, which serves as a condition for identifying quantum critical points in both homonuclear and heteronuclear systems, and apply it to multiple settings to analyze their quantum critical points. We establish a direct link between the quantum entanglement quantifier and experimentally accessible NMR observables, enabling entanglement to be quantified through NMR signal processing. This provides a practical framework for characterizing quantum correlations using standard NMR experiments. These findings provide insights into the thermal control of quantum features, with implications for quantum-enhanced NMR, low-temperature spectroscopy, and emerging quantum technologies.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 32","pages":" 16996-17007"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02597d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate quantum entanglement in two-spin-1/2 NMR systems at thermal equilibrium under external magnetic fields. We derive closed-form analytical expressions for the entanglement of the system and show how the entanglement depends on temperature and magnetic field strength, resulting in a threshold temperature beyond which entanglement vanishes. We demonstrate that at zero temperature, the system exhibits a quantum critical point, characterized by non-analytic behavior in the measure of entanglement. We further develop analytical criterion for level crossing, which serves as a condition for identifying quantum critical points in both homonuclear and heteronuclear systems, and apply it to multiple settings to analyze their quantum critical points. We establish a direct link between the quantum entanglement quantifier and experimentally accessible NMR observables, enabling entanglement to be quantified through NMR signal processing. This provides a practical framework for characterizing quantum correlations using standard NMR experiments. These findings provide insights into the thermal control of quantum features, with implications for quantum-enhanced NMR, low-temperature spectroscopy, and emerging quantum technologies.

Abstract Image

通过磁场和温度控制双自旋1/2核磁共振系统中的量子纠缠。
研究了外磁场下热平衡状态下双自旋1/2核磁共振系统的量子纠缠。我们导出了系统纠缠的封闭解析表达式,并说明纠缠如何依赖于温度和磁场强度,从而得到一个阈值温度,超过该阈值温度纠缠就会消失。我们证明了在零温度下,系统表现出一个量子临界点,其特征是在纠缠测量中表现出非解析行为。我们进一步发展了平交分析判据,作为识别同核和异核系统量子临界点的条件,并将其应用于多种情况下分析其量子临界点。我们在量子纠缠量子和实验可获得的核磁共振观测物之间建立了直接联系,使纠缠能够通过核磁共振信号处理被量化。这为使用标准核磁共振实验表征量子相关性提供了一个实用的框架。这些发现为量子特征的热控制提供了见解,对量子增强核磁共振、低温光谱和新兴量子技术具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信