iSEARLE: Improving Textual Inversion for Zero-Shot Composed Image Retrieval

IF 18.6
Lorenzo Agnolucci;Alberto Baldrati;Alberto Del Bimbo;Marco Bertini
{"title":"iSEARLE: Improving Textual Inversion for Zero-Shot Composed Image Retrieval","authors":"Lorenzo Agnolucci;Alberto Baldrati;Alberto Del Bimbo;Marco Bertini","doi":"10.1109/TPAMI.2025.3593539","DOIUrl":null,"url":null,"abstract":"Given a query consisting of a reference image and a relative caption, Composed Image Retrieval (CIR) aims to retrieve target images visually similar to the reference one while incorporating the changes specified in the relative caption. The reliance of supervised methods on labor-intensive manually labeled datasets hinders their broad applicability to CIR. In this work, we introduce a new task, Zero-Shot CIR (ZS-CIR), that addresses CIR without the need for a labeled training dataset. We propose an approach, named iSEARLE (improved zero-Shot composEd imAge Retrieval with textuaL invErsion), that involves mapping the visual information of the reference image into a pseudo-word token in the CLIP token embedding space and combining it with the relative caption. To foster research on ZS-CIR, we present an open-domain benchmarking dataset named CIRCO (Composed Image Retrieval on Common Objects in context), the first CIR dataset where each query is labeled with multiple ground truths and a semantic categorization. The experimental results illustrate that iSEARLE obtains state-of-the-art performance on three different CIR datasets – FashionIQ, CIRR, and the proposed CIRCO – and two additional evaluation settings, namely domain conversion and object composition.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 11","pages":"10801-10817"},"PeriodicalIF":18.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11098979/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a query consisting of a reference image and a relative caption, Composed Image Retrieval (CIR) aims to retrieve target images visually similar to the reference one while incorporating the changes specified in the relative caption. The reliance of supervised methods on labor-intensive manually labeled datasets hinders their broad applicability to CIR. In this work, we introduce a new task, Zero-Shot CIR (ZS-CIR), that addresses CIR without the need for a labeled training dataset. We propose an approach, named iSEARLE (improved zero-Shot composEd imAge Retrieval with textuaL invErsion), that involves mapping the visual information of the reference image into a pseudo-word token in the CLIP token embedding space and combining it with the relative caption. To foster research on ZS-CIR, we present an open-domain benchmarking dataset named CIRCO (Composed Image Retrieval on Common Objects in context), the first CIR dataset where each query is labeled with multiple ground truths and a semantic categorization. The experimental results illustrate that iSEARLE obtains state-of-the-art performance on three different CIR datasets – FashionIQ, CIRR, and the proposed CIRCO – and two additional evaluation settings, namely domain conversion and object composition.
改进文本反演零镜头合成图像检索
给定由参考图像和相对标题组成的查询,组合图像检索(CIR)旨在检索视觉上与参考图像相似的目标图像,同时包含相对标题中指定的更改。监督方法依赖于劳动密集型的人工标记数据集,阻碍了它们在CIR中的广泛适用性。在这项工作中,我们引入了一个新的任务,零射击CIR (ZS-CIR),该任务无需标记训练数据集即可解决CIR问题。我们提出了一种名为iSEARLE(改进的zero-Shot组合图像检索与文本反转)的方法,该方法涉及将参考图像的视觉信息映射到CLIP标记嵌入空间中的伪词标记,并将其与相关标题相结合。为了促进对ZS-CIR的研究,我们提出了一个名为CIRCO的开放域基准数据集,这是第一个CIR数据集,其中每个查询都被标记为多个基本事实和语义分类。实验结果表明,iSEARLE在三个不同的CIR数据集(FashionIQ、CIRR和CIRCO)以及两个额外的评估设置(即域转换和对象组成)上获得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信