3D-printed microcell for protein NMR at high ionic strengths and small sample volumes.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2025-07-16 eCollection Date: 2025-01-01 DOI:10.5194/mr-6-157-2025
Tayeb Kakeshpour, Martin D Gelenter, Jinfa Ying, Ad Bax
{"title":"3D-printed microcell for protein NMR at high ionic strengths and small sample volumes.","authors":"Tayeb Kakeshpour, Martin D Gelenter, Jinfa Ying, Ad Bax","doi":"10.5194/mr-6-157-2025","DOIUrl":null,"url":null,"abstract":"<p><p>Standard solution NMR measurements use 5 mm outer diameter (OD) sample tubes that require ca. 0.5 mL of solvent to minimize \"end effects\" on magnetic field homogeneity in the active volume of the sample. Shigemi cells reduce the solvent requirement to ca. 0.29 mL. At high ionic strength or at ultrahigh magnetic fields, smaller OD samples are needed to study samples in conductive, radiofrequency-absorbing solvents such as water. We demonstrate an effective and inexpensive alternative for reducing the active sample volume to 0.13 mL by 3D printing ellipsoidal shaped cells that are inserted into 5 mm OD NMR tubes. Static magnetic susceptibility, <math><mi>χ</mi></math> , of printer resin was measured using a simple slice-selection pulse sequence. We found that the <math><mi>χ</mi></math> of water increases linearly with NaCl concentration from <math><mrow><mo>-</mo> <mn>9.05</mn></mrow> </math> to <math><mrow><mo>-</mo> <mn>8.65</mn></mrow> </math> ppm for 0 to 2 M NaCl. The <math><mi>χ</mi></math> of D<sub>2</sub>O was measured to be <math><mrow><mo>-</mo> <mn>9.01</mn></mrow> </math> ppm. The susceptibility difference between the resin ( <math><mrow><mi>χ</mi> <mo>=</mo> <mo>-</mo> <mn>9.40</mn></mrow> </math> ppm) and water can be minimized by paramagnetic doping of the resin. Such doping was found to be unnecessary for obtaining high-quality protein NMR spectra when using ellipsoidal-shaped cells that are insensitive to susceptibility mismatching. The microcells offer outstanding radiofrequency (RF) and good <math> <mrow><msub><mi>B</mi> <mi>o</mi></msub> </mrow> </math> homogeneities. Integrated 600 MHz heteronuclear single quantum coherence (HSQC) signal intensities for the microcell sample in phosphate-buffered saline (PBS) buffer were <math><mrow><mn>6.5</mn> <mo>±</mo> <mn>4</mn></mrow> </math> % lower than for 0.5 mL of the same protein solution in a regular 5 mm sample tube. The cell is demonstrated for N-acetylated <math><mi>α</mi></math> -synuclein in PBS buffer and for observing tetramerization of melittin at 2 M NaCl.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":"6 2","pages":"157-172"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296210/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-6-157-2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Standard solution NMR measurements use 5 mm outer diameter (OD) sample tubes that require ca. 0.5 mL of solvent to minimize "end effects" on magnetic field homogeneity in the active volume of the sample. Shigemi cells reduce the solvent requirement to ca. 0.29 mL. At high ionic strength or at ultrahigh magnetic fields, smaller OD samples are needed to study samples in conductive, radiofrequency-absorbing solvents such as water. We demonstrate an effective and inexpensive alternative for reducing the active sample volume to 0.13 mL by 3D printing ellipsoidal shaped cells that are inserted into 5 mm OD NMR tubes. Static magnetic susceptibility, χ , of printer resin was measured using a simple slice-selection pulse sequence. We found that the χ of water increases linearly with NaCl concentration from - 9.05 to - 8.65 ppm for 0 to 2 M NaCl. The χ of D2O was measured to be - 9.01 ppm. The susceptibility difference between the resin ( χ = - 9.40 ppm) and water can be minimized by paramagnetic doping of the resin. Such doping was found to be unnecessary for obtaining high-quality protein NMR spectra when using ellipsoidal-shaped cells that are insensitive to susceptibility mismatching. The microcells offer outstanding radiofrequency (RF) and good B o homogeneities. Integrated 600 MHz heteronuclear single quantum coherence (HSQC) signal intensities for the microcell sample in phosphate-buffered saline (PBS) buffer were 6.5 ± 4 % lower than for 0.5 mL of the same protein solution in a regular 5 mm sample tube. The cell is demonstrated for N-acetylated α -synuclein in PBS buffer and for observing tetramerization of melittin at 2 M NaCl.

Abstract Image

Abstract Image

Abstract Image

3d打印的蛋白质核磁共振微细胞在高离子强度和小样品体积。
标准溶液核磁共振测量使用5毫米外径(OD)的样管,需要约0.5毫升的溶剂,以尽量减少“末端效应”对磁场均匀性在样品的活性体积。Shigemi电池将溶剂需求量减少到约0.29 mL。在高离子强度或超高磁场下,需要更小的外径样品来研究导电、射频吸收溶剂(如水)中的样品。我们展示了一种有效且廉价的替代方案,通过3D打印椭球状细胞插入5毫米OD的核磁共振管,将活性样品体积减少到0.13 mL。采用简单的切片选择脉冲序列测量了打印树脂的静态磁化率χ。我们发现,在0 ~ 2 M NaCl浓度下,水的χ随NaCl浓度线性增加,从- 9.05到- 8.65 ppm。D2O的χ值为- 9.01 ppm。通过顺磁掺杂,树脂与水之间的磁化率差异(χ = - 9.40 ppm)可以最小化。当使用对敏感性错配不敏感的椭球形细胞时,发现这种掺杂对于获得高质量的蛋白质NMR谱是不必要的。微蜂窝提供出色的射频(RF)和良好的微波均匀性。在磷酸盐缓冲盐水(PBS)缓冲液中,微细胞样品的集成600 MHz异核单量子相干(HSQC)信号强度比在常规5mm样管中0.5 mL相同的蛋白质溶液低6.5±4%。该细胞在PBS缓冲液中显示n -乙酰化α -突触核蛋白,并在2 M NaCl中观察蜂毒蛋白的四聚化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信