Structure–function relationships in unspecific peroxygenases revealed by a comparative study of their action on the phenolic lignin monomer 4-propylguaiacol
IF 6.1 1区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Marta Barros-Reguera, Esteban Lopez-Tavera, Gabriela C. Schröder, Greta Nardini, Kenneth A. Kristoffersen, Iván Ayuso-Fernández, Vincent G. H. Eijsink, Morten Sørlie
{"title":"Structure–function relationships in unspecific peroxygenases revealed by a comparative study of their action on the phenolic lignin monomer 4-propylguaiacol","authors":"Marta Barros-Reguera, Esteban Lopez-Tavera, Gabriela C. Schröder, Greta Nardini, Kenneth A. Kristoffersen, Iván Ayuso-Fernández, Vincent G. H. Eijsink, Morten Sørlie","doi":"10.1186/s13068-025-02675-w","DOIUrl":null,"url":null,"abstract":"<div><p>Unspecific peroxygenases (UPOs) are versatile enzymes capable of oxidizing a broad range of substrates, using hydrogen peroxide as the sole co-substrate. In this study, UPOs were evaluated for their potential in the selective oxyfunctionalization of the phenolic lignin monomer 4-propylguaiacol (4-PG) to generate versatile scaffolds for the synthesis of high-value compounds. In addition to the desired peroxygenase reaction, the phenolic group of 4-PG is susceptible to undesirable one-electron oxidation (peroxidase activity). Assessment of the activity of 19 UPOs from phylogenetically diverse clades toward 4-PG revealed that several UPOs could serve as potential biocatalysts for the functionalization of 4-PG, with some enzymes showing both promising conversion yields (>50%) and regioselectivity for the peroxygenase reaction. Pronounced differences in peroxygenase:peroxidase activity ratios and regioselectivity were observed. Comparative analysis—supported by experimental activity profiles and structural data—suggest that a more constrained active-site topology contributes to the peroxygenase activity. UPOs from a clade within the Ascomycota phylum with high peroxygenase activity possess a unique aliphatic pocket in their catalytic centers. Our study provides valuable insights into the structure–function relationships underpinning enhanced peroxygenase activity of UPOs and provides a functional mapping of a broad UPO-sequence space for 4-PG, highlighting these enzymes as promising catalysts for the selective oxyfunctionalization of a phenolic lignin monomer.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02675-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Unspecific peroxygenases (UPOs) are versatile enzymes capable of oxidizing a broad range of substrates, using hydrogen peroxide as the sole co-substrate. In this study, UPOs were evaluated for their potential in the selective oxyfunctionalization of the phenolic lignin monomer 4-propylguaiacol (4-PG) to generate versatile scaffolds for the synthesis of high-value compounds. In addition to the desired peroxygenase reaction, the phenolic group of 4-PG is susceptible to undesirable one-electron oxidation (peroxidase activity). Assessment of the activity of 19 UPOs from phylogenetically diverse clades toward 4-PG revealed that several UPOs could serve as potential biocatalysts for the functionalization of 4-PG, with some enzymes showing both promising conversion yields (>50%) and regioselectivity for the peroxygenase reaction. Pronounced differences in peroxygenase:peroxidase activity ratios and regioselectivity were observed. Comparative analysis—supported by experimental activity profiles and structural data—suggest that a more constrained active-site topology contributes to the peroxygenase activity. UPOs from a clade within the Ascomycota phylum with high peroxygenase activity possess a unique aliphatic pocket in their catalytic centers. Our study provides valuable insights into the structure–function relationships underpinning enhanced peroxygenase activity of UPOs and provides a functional mapping of a broad UPO-sequence space for 4-PG, highlighting these enzymes as promising catalysts for the selective oxyfunctionalization of a phenolic lignin monomer.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis