Structural and Enzymological Characterization of Phosphoserine Phosphatase From Brucella melitensis.

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tanguy Scaillet, Élise Pierson, Marianne Fillet, Johan Wouters
{"title":"Structural and Enzymological Characterization of Phosphoserine Phosphatase From Brucella melitensis.","authors":"Tanguy Scaillet, Élise Pierson, Marianne Fillet, Johan Wouters","doi":"10.1002/prot.70027","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acid L-serine (L-Ser) is a precursor of various biomolecules, including other amino acids, glutathione, and nucleotides. The metabolism of this amino acid is crucial in diseases such as brucellosis. Previous studies have revealed that the enzymes involved in L-Ser biosynthesis are essential for Brucella replication, making them potential targets for the development of new drugs. Here, we focus on Brucella melitensis phosphoserine phosphatase (BmPSP), which catalyzes the dephosphorylation of phosphoserine in L-Ser. The enzyme is characterized through enzymatic and structural studies, leading to the discovery of its first crystallographic structures. The interactions of BmPSP with different ligands are also investigated. We demonstrate that the substitution of its Mg<sup>2+</sup> cofactor with Ca<sup>2+</sup> inhibits the enzyme and results in a slight movement of catalytic residues in the active site. Crystallographic structures of BmPSP in complex with substrate, reaction products, and substrate analogs are also detailed, revealing the interaction between these molecules and the active site residues. This structural study provides a better understanding of phosphoserine phosphatases, highlighting the involvement of two highly conserved residues in the mechanism of substrate entry into the active site.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amino acid L-serine (L-Ser) is a precursor of various biomolecules, including other amino acids, glutathione, and nucleotides. The metabolism of this amino acid is crucial in diseases such as brucellosis. Previous studies have revealed that the enzymes involved in L-Ser biosynthesis are essential for Brucella replication, making them potential targets for the development of new drugs. Here, we focus on Brucella melitensis phosphoserine phosphatase (BmPSP), which catalyzes the dephosphorylation of phosphoserine in L-Ser. The enzyme is characterized through enzymatic and structural studies, leading to the discovery of its first crystallographic structures. The interactions of BmPSP with different ligands are also investigated. We demonstrate that the substitution of its Mg2+ cofactor with Ca2+ inhibits the enzyme and results in a slight movement of catalytic residues in the active site. Crystallographic structures of BmPSP in complex with substrate, reaction products, and substrate analogs are also detailed, revealing the interaction between these molecules and the active site residues. This structural study provides a better understanding of phosphoserine phosphatases, highlighting the involvement of two highly conserved residues in the mechanism of substrate entry into the active site.

梅利特布鲁氏菌磷酸丝氨酸磷酸酶的结构与酶学特性研究。
氨基酸-丝氨酸(L-Ser)是各种生物分子的前体,包括其他氨基酸、谷胱甘肽和核苷酸。这种氨基酸的代谢对布鲁氏菌病等疾病至关重要。先前的研究表明,参与l -丝氨酸生物合成的酶对布鲁氏菌的复制至关重要,这使它们成为开发新药的潜在靶点。本文重点研究了布鲁氏菌(Brucella melitensis)磷酸化丝氨酸磷酸酶(BmPSP),该酶催化l -丝氨酸的去磷酸化。通过酶学和结构研究对该酶进行了表征,从而发现了它的第一个晶体结构。研究了BmPSP与不同配体的相互作用。我们证明,用Ca2+取代其Mg2+辅因子抑制酶,并导致活性位点催化残基的轻微运动。BmPSP与底物、反应产物和底物类似物配合物的晶体结构也很详细,揭示了这些分子与活性位点残基之间的相互作用。这项结构研究提供了对磷酸丝氨酸磷酸酶的更好理解,强调了两个高度保守的残基参与底物进入活性位点的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信