Three-dimensional image-guided navigation technique for femoral artery puncture.

IF 1.9 4区 医学 Q3 SURGERY
Computer Assisted Surgery Pub Date : 2025-12-01 Epub Date: 2025-07-28 DOI:10.1080/24699322.2025.2535967
Yunmeng Zhang, Shenglin Liu, Qiang Zhang, Qingmin Feng
{"title":"Three-dimensional image-guided navigation technique for femoral artery puncture.","authors":"Yunmeng Zhang, Shenglin Liu, Qiang Zhang, Qingmin Feng","doi":"10.1080/24699322.2025.2535967","DOIUrl":null,"url":null,"abstract":"<p><p>Percutaneous femoral arterial access is a fundamental procedure in minimally invasive vascular interventions. However, inadequate visualization of the femoral artery may lead to inaccurate puncture and complications, with reported incidence rates of 3 to 18%. This study proposes a three-dimensional (3D) image-guided navigation system designed to enhance real-time visualization of the target vessel and puncture site during femoral artery access. This system employed an Iterative Closest Point (ICP)-based point cloud algorithm to achieve spatial registration between image space and patient space. An improved ICP method is implemented to optimize surface point cloud alignment, providing higher efficiency and accuracy compared to conventional approaches. Validation experiments were conducted using a standard model and a human phantom. Registration and navigation accuracy were quantified using fiducial registration error (FRE) for spatial alignment, target registration error (TRE) for navigation accuracy, and distance error for puncture precision. The system achieved a FRE of 0.944 mm. On the standard model, the average distance error was 0.885 mm, and the TRE was 0.915 mm. On the human phantom, the average distance error is 0.967 mm, and the average TRE is 0.981 mm. These results confirm the feasibility and effectiveness of the proposed 3D navigation system in guiding femoral artery puncture. All error metrics were within clinically acceptable thresholds, suggesting potential for improved procedural safety and precision in percutaneous vascular interventions.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"30 1","pages":"2535967"},"PeriodicalIF":1.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2025.2535967","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Percutaneous femoral arterial access is a fundamental procedure in minimally invasive vascular interventions. However, inadequate visualization of the femoral artery may lead to inaccurate puncture and complications, with reported incidence rates of 3 to 18%. This study proposes a three-dimensional (3D) image-guided navigation system designed to enhance real-time visualization of the target vessel and puncture site during femoral artery access. This system employed an Iterative Closest Point (ICP)-based point cloud algorithm to achieve spatial registration between image space and patient space. An improved ICP method is implemented to optimize surface point cloud alignment, providing higher efficiency and accuracy compared to conventional approaches. Validation experiments were conducted using a standard model and a human phantom. Registration and navigation accuracy were quantified using fiducial registration error (FRE) for spatial alignment, target registration error (TRE) for navigation accuracy, and distance error for puncture precision. The system achieved a FRE of 0.944 mm. On the standard model, the average distance error was 0.885 mm, and the TRE was 0.915 mm. On the human phantom, the average distance error is 0.967 mm, and the average TRE is 0.981 mm. These results confirm the feasibility and effectiveness of the proposed 3D navigation system in guiding femoral artery puncture. All error metrics were within clinically acceptable thresholds, suggesting potential for improved procedural safety and precision in percutaneous vascular interventions.

股动脉穿刺三维图像引导导航技术。
经皮股动脉通路是微创血管介入治疗的基本步骤。然而,股动脉显像不足可能导致穿刺不准确和并发症,据报道发生率为3%至18%。本研究提出了一种三维(3D)图像引导导航系统,旨在增强股动脉进入过程中目标血管和穿刺部位的实时可视化。该系统采用基于迭代最近点(ICP)的点云算法实现图像空间与患者空间的空间配准。提出了一种改进的ICP方法来优化地表点云对齐,与传统方法相比,具有更高的效率和精度。使用标准模型和人体幻影进行验证实验。利用空间对准的基准配准误差(FRE)、导航精度的目标配准误差(TRE)和穿刺精度的距离误差量化配准和导航精度。该系统的FRE为0.944 mm。在标准模型上,平均距离误差为0.885 mm, TRE为0.915 mm。在人体幻影上,平均距离误差为0.967 mm,平均TRE为0.981 mm。这些结果证实了三维导航系统在股动脉穿刺引导中的可行性和有效性。所有的误差指标都在临床可接受的阈值范围内,表明有可能提高经皮血管介入手术的安全性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信