{"title":"Genomic insights into bacteriophages: a new frontier in AMR detection and phage therapy.","authors":"Basudha Banerjee, Sayanti Halder, Shubham Kumar, Muskan Chaddha, Raiyan Ali, Ramakant Mohite, Muskan Bano, Rajesh Pandey","doi":"10.1093/bfgp/elaf011","DOIUrl":null,"url":null,"abstract":"<p><p>The misuse and overprescription of antibiotics have accelerated the rise of antimicrobial resistance (AMR), rendering many antibiotics ineffective and leading to significant clinical challenges. The conventional treatment methods have become progressively challenging, posing a threat of evolving into an impending silent pandemic. The long track record of bacteriophages combating bacterial infections has renewed hope into the potential therapeutic benefits of bacteriophages. Bacteriophage therapy offers a promising alternative to antibiotics, particularly against multidrug-resistant (MDR) pathogens. This article explores the promise of phages as a potential means to combat superbugs from the perspective of the genomic and transcriptomic landscape of the phages and their bacterial host. Advances in bacteriophage genomics have expedited the detection of new phages and AMR genes, enhancing our understanding of phage-host interactions and enabling the identification of potential treatments for antibiotic-resistant bacteria. At the same time, holo-transcriptomic studies hold potential for discovering disease and context-specific transcriptionally active phages vis-à-vis disease severity. Holo-transcriptomic profiling can be applied to investigate the presence of AMR-bacteria, highlighting COVID-19 and Dengue diseases, in addition to the globally recognized ESKAPE pathogens. By simultaneously capturing phage, bacterial and host transcripts, this approach enables a better comprehension of the bacteriophage dynamics. Moreover, insight into these defence and counter-defence interactions is essential for augmenting the adoption of phage therapy at scale and advancing bacterial control in clinical settings.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elaf011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The misuse and overprescription of antibiotics have accelerated the rise of antimicrobial resistance (AMR), rendering many antibiotics ineffective and leading to significant clinical challenges. The conventional treatment methods have become progressively challenging, posing a threat of evolving into an impending silent pandemic. The long track record of bacteriophages combating bacterial infections has renewed hope into the potential therapeutic benefits of bacteriophages. Bacteriophage therapy offers a promising alternative to antibiotics, particularly against multidrug-resistant (MDR) pathogens. This article explores the promise of phages as a potential means to combat superbugs from the perspective of the genomic and transcriptomic landscape of the phages and their bacterial host. Advances in bacteriophage genomics have expedited the detection of new phages and AMR genes, enhancing our understanding of phage-host interactions and enabling the identification of potential treatments for antibiotic-resistant bacteria. At the same time, holo-transcriptomic studies hold potential for discovering disease and context-specific transcriptionally active phages vis-à-vis disease severity. Holo-transcriptomic profiling can be applied to investigate the presence of AMR-bacteria, highlighting COVID-19 and Dengue diseases, in addition to the globally recognized ESKAPE pathogens. By simultaneously capturing phage, bacterial and host transcripts, this approach enables a better comprehension of the bacteriophage dynamics. Moreover, insight into these defence and counter-defence interactions is essential for augmenting the adoption of phage therapy at scale and advancing bacterial control in clinical settings.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.