Oriol de Barrios, Ingrid Ocón-Gabarró, Mar Gusi-Vives, Olga Collazo, Ainara Meler, Paola A Romecín, Alba Martínez-Moreno, Juan Ramón Tejedor, Mario F Fraga, Pauline Schneider, Michela Bardini, Giovanni Cazzaniga, Rolf Marschalek, Ronald W Stam, Clara Bueno, Pablo Menéndez, Maribel Parra
{"title":"HDAC7 induction combined with standard-of-care chemotherapy provides a therapeutic advantage in t(4;11) infant B-cell acute lymphoblastic leukemia.","authors":"Oriol de Barrios, Ingrid Ocón-Gabarró, Mar Gusi-Vives, Olga Collazo, Ainara Meler, Paola A Romecín, Alba Martínez-Moreno, Juan Ramón Tejedor, Mario F Fraga, Pauline Schneider, Michela Bardini, Giovanni Cazzaniga, Rolf Marschalek, Ronald W Stam, Clara Bueno, Pablo Menéndez, Maribel Parra","doi":"10.1186/s40364-025-00810-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infants diagnosed with B cell acute lymphoblastic leukemia (B-ALL) and t(4;11) chromosomal rearrangement display poor therapeutic response, associated to the low expression of B lymphocyte factor HDAC7. This study was conceived to identify a therapeutic strategy for t(4;11) B-ALL that restores optimal HDAC7 expression.</p><p><strong>Methods: </strong>A multiomics approach in a large infant pro-B-ALL cohort was employed to identify HDAC7's repression mechanism. These data, combined with cell culture assays in a variety of pro-B-ALL cell lines with differential HDAC7 levels, led us to define a novel combination therapy. Murine leukemia models and ex vivo assays using patient-derived xenografts (PDX) were employed to assess the benefits of this therapy when incorporated to glucocorticoid-based chemotherapy.</p><p><strong>Results: </strong>Our data demonstrates that HDAC7 is epigenetically silenced by EZH2 and KMT2A::AFF1 fusion protein. Remarkably, the Menin-1 inhibitor MI-538 restores HDAC7 expression, and the effect is enhanced by class I HDAC inhibitor chidamide. This treatment drives leukemic pro-B cells towards a more differentiated state and impairs aberrant proliferation in an HDAC7-dependent manner. This newly identified therapy increases glucocorticoid sensitivity of PDX cells ex vivo, by repressing RUNX2 transcription factor. Finally, combining MI-538 and chidamide with standard chemotherapy reduces PDX cells engraftment in vivo and delays relapse.</p><p><strong>Conclusions: </strong>The combined therapy proposed, based on Menin-1 inhibition, improves t(4;11) B-ALL cells' response to standard therapy, an effect partially mediated by HDAC7 induction. Therefore, this novel therapy opens a new field for personalized treatments in high-risk leukemia, especially for infants presenting low expression of HDAC7 B cell factor.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"99"},"PeriodicalIF":11.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00810-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Infants diagnosed with B cell acute lymphoblastic leukemia (B-ALL) and t(4;11) chromosomal rearrangement display poor therapeutic response, associated to the low expression of B lymphocyte factor HDAC7. This study was conceived to identify a therapeutic strategy for t(4;11) B-ALL that restores optimal HDAC7 expression.
Methods: A multiomics approach in a large infant pro-B-ALL cohort was employed to identify HDAC7's repression mechanism. These data, combined with cell culture assays in a variety of pro-B-ALL cell lines with differential HDAC7 levels, led us to define a novel combination therapy. Murine leukemia models and ex vivo assays using patient-derived xenografts (PDX) were employed to assess the benefits of this therapy when incorporated to glucocorticoid-based chemotherapy.
Results: Our data demonstrates that HDAC7 is epigenetically silenced by EZH2 and KMT2A::AFF1 fusion protein. Remarkably, the Menin-1 inhibitor MI-538 restores HDAC7 expression, and the effect is enhanced by class I HDAC inhibitor chidamide. This treatment drives leukemic pro-B cells towards a more differentiated state and impairs aberrant proliferation in an HDAC7-dependent manner. This newly identified therapy increases glucocorticoid sensitivity of PDX cells ex vivo, by repressing RUNX2 transcription factor. Finally, combining MI-538 and chidamide with standard chemotherapy reduces PDX cells engraftment in vivo and delays relapse.
Conclusions: The combined therapy proposed, based on Menin-1 inhibition, improves t(4;11) B-ALL cells' response to standard therapy, an effect partially mediated by HDAC7 induction. Therefore, this novel therapy opens a new field for personalized treatments in high-risk leukemia, especially for infants presenting low expression of HDAC7 B cell factor.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.