{"title":"Ecological epidemiology insights into clonorchiosis endemicity in Guangxi, China and Vietnam: a comprehensive machine learning analysis.","authors":"Jin-Xin Zheng, Hui-Hui Zhu, Shang Xia, Men-Bao Qian, Robert Bergquist, Hung Manh Nguyen, Xiao-Nong Zhou","doi":"10.1186/s12942-025-00404-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clonorchis sinensis, the liver fluke responsible for clonorchiosis, presents a persistent public health burden in Guangxi (Southern China) and Vietnam. Its transmission is influenced by a complex interplay of ecological, climatic, and socio-cultural factors.</p><p><strong>Methods: </strong>We compiled infection occurrence data from systematic literature reviews and national surveys conducted between 2000 and 2018. Environmental and climatic predictors were obtained from long-term raster datasets. Machine learning models, including logistic regression and tree-based ensemble methods, were used to assess associations between predictor variables and C. sinensis presence. Partial dependence plots were employed to refine predictor selection and explore marginal effects.</p><p><strong>Results: </strong>Raw freshwater fish consumption was identified as the most influential predictor. In Guangxi, 54.9% of counties reported raw fish consumption, compared to 31.7% in Vietnam. Logistic regression achieved the highest predictive accuracy (AUC = 0.941). Climatic comparisons showed that Vietnam had a higher annual mean temperature (Bio1: 23.37 °C vs. 20.86 °C), greater temperature seasonality (Bio4: 609.33 vs. 464.92), and higher annual precipitation (Bio12: 1731.64 mm vs. 1607.56 mm) than Guangxi, contributing to spatial differences in endemicity. High-risk zones were concentrated along the China-Vietnam border, suggesting the need for geographically targeted interventions.</p><p><strong>Conclusion: </strong>The findings underscore the combined influence of ecological and behavioral factors on C. sinensis transmission. The predictive modeling framework offers valuable insights for surveillance planning and cross-border disease control, reinforcing the role of ecological epidemiology in guiding parasitic disease prevention strategies.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"24 1","pages":"18"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Health Geographics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12942-025-00404-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Clonorchis sinensis, the liver fluke responsible for clonorchiosis, presents a persistent public health burden in Guangxi (Southern China) and Vietnam. Its transmission is influenced by a complex interplay of ecological, climatic, and socio-cultural factors.
Methods: We compiled infection occurrence data from systematic literature reviews and national surveys conducted between 2000 and 2018. Environmental and climatic predictors were obtained from long-term raster datasets. Machine learning models, including logistic regression and tree-based ensemble methods, were used to assess associations between predictor variables and C. sinensis presence. Partial dependence plots were employed to refine predictor selection and explore marginal effects.
Results: Raw freshwater fish consumption was identified as the most influential predictor. In Guangxi, 54.9% of counties reported raw fish consumption, compared to 31.7% in Vietnam. Logistic regression achieved the highest predictive accuracy (AUC = 0.941). Climatic comparisons showed that Vietnam had a higher annual mean temperature (Bio1: 23.37 °C vs. 20.86 °C), greater temperature seasonality (Bio4: 609.33 vs. 464.92), and higher annual precipitation (Bio12: 1731.64 mm vs. 1607.56 mm) than Guangxi, contributing to spatial differences in endemicity. High-risk zones were concentrated along the China-Vietnam border, suggesting the need for geographically targeted interventions.
Conclusion: The findings underscore the combined influence of ecological and behavioral factors on C. sinensis transmission. The predictive modeling framework offers valuable insights for surveillance planning and cross-border disease control, reinforcing the role of ecological epidemiology in guiding parasitic disease prevention strategies.
期刊介绍:
A leader among the field, International Journal of Health Geographics is an interdisciplinary, open access journal publishing internationally significant studies of geospatial information systems and science applications in health and healthcare. With an exceptional author satisfaction rate and a quick time to first decision, the journal caters to readers across an array of healthcare disciplines globally.
International Journal of Health Geographics welcomes novel studies in the health and healthcare context spanning from spatial data infrastructure and Web geospatial interoperability research, to research into real-time Geographic Information Systems (GIS)-enabled surveillance services, remote sensing applications, spatial epidemiology, spatio-temporal statistics, internet GIS and cyberspace mapping, participatory GIS and citizen sensing, geospatial big data, healthy smart cities and regions, and geospatial Internet of Things and blockchain.