Dosimetric evaluation of synthetic kilo-voltage CT images generated from megavoltage CT for head and neck tomotherapy using a conditional GAN network.

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yazdan Choghazardi, Mohamad Bagher Tavakoli, Iraj Abedi, Mahnaz Roayaei, Simin Hemati, Ahmad Shanei
{"title":"Dosimetric evaluation of synthetic kilo-voltage CT images generated from megavoltage CT for head and neck tomotherapy using a conditional GAN network.","authors":"Yazdan Choghazardi, Mohamad Bagher Tavakoli, Iraj Abedi, Mahnaz Roayaei, Simin Hemati, Ahmad Shanei","doi":"10.1007/s13246-025-01603-4","DOIUrl":null,"url":null,"abstract":"<p><p>The lower image contrast of megavoltage computed tomography (MVCT), which corresponds to kilovoltage computed tomography (kVCT), can inhibit accurate dosimetric assessments. This study proposes a deep learning approach, specifically the pix2pix network, to generate high-quality synthetic kVCT (skVCT) images from MVCT data. The model was trained on a dataset of 25 paired patient images and evaluated on a test set of 15 paired images. We performed visual inspections to assess the quality of the generated skVCT images and calculated the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Dosimetric equivalence was evaluated by comparing the gamma pass rates of treatment plans derived from skVCT and kVCT images. Results showed that skVCT images exhibited significantly higher quality than MVCT images, with PSNR and SSIM values of 31.9 ± 1.1 dB and 94.8% ± 1.3%, respectively, compared to 26.8 ± 1.7 dB and 89.5% ± 1.5% for MVCT-to-kVCT comparisons. Furthermore, treatment plans based on skVCT images achieved excellent gamma pass rates of 99.78 ± 0.14% and 99.82 ± 0.20% for 2 mm/2% and 3 mm/3% criteria, respectively, comparable to those obtained from kVCT-based plans (99.70 ± 0.31% and 99.79 ± 1.32%). This study demonstrates the potential of pix2pix models for generating high-quality skVCT images, which could significantly enhance Adaptive Radiation Therapy (ART).</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01603-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lower image contrast of megavoltage computed tomography (MVCT), which corresponds to kilovoltage computed tomography (kVCT), can inhibit accurate dosimetric assessments. This study proposes a deep learning approach, specifically the pix2pix network, to generate high-quality synthetic kVCT (skVCT) images from MVCT data. The model was trained on a dataset of 25 paired patient images and evaluated on a test set of 15 paired images. We performed visual inspections to assess the quality of the generated skVCT images and calculated the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Dosimetric equivalence was evaluated by comparing the gamma pass rates of treatment plans derived from skVCT and kVCT images. Results showed that skVCT images exhibited significantly higher quality than MVCT images, with PSNR and SSIM values of 31.9 ± 1.1 dB and 94.8% ± 1.3%, respectively, compared to 26.8 ± 1.7 dB and 89.5% ± 1.5% for MVCT-to-kVCT comparisons. Furthermore, treatment plans based on skVCT images achieved excellent gamma pass rates of 99.78 ± 0.14% and 99.82 ± 0.20% for 2 mm/2% and 3 mm/3% criteria, respectively, comparable to those obtained from kVCT-based plans (99.70 ± 0.31% and 99.79 ± 1.32%). This study demonstrates the potential of pix2pix models for generating high-quality skVCT images, which could significantly enhance Adaptive Radiation Therapy (ART).

使用条件GAN网络对巨压CT生成的用于头颈部断层治疗的合成千伏CT图像进行剂量学评估。
与千伏计算机断层扫描(kVCT)相对应的巨电压计算机断层扫描(MVCT)图像对比度较低,可能会抑制准确的剂量学评估。本研究提出了一种深度学习方法,特别是pix2pix网络,从MVCT数据中生成高质量的合成kVCT (skVCT)图像。该模型在25个配对患者图像的数据集上进行训练,并在15个配对图像的测试集上进行评估。我们通过目视检查来评估生成的skVCT图像的质量,并计算峰值信噪比(PSNR)和结构相似指数(SSIM)。通过比较来自skVCT和kVCT图像的治疗方案的伽马通过率来评估剂量学等效性。结果显示,skVCT图像质量明显高于MVCT图像,PSNR和SSIM值分别为31.9±1.1 dB和94.8%±1.3%,而MVCT与kvct的PSNR和SSIM值分别为26.8±1.7 dB和89.5%±1.5%。此外,基于skVCT图像的治疗方案在2 mm/2%和3 mm/3%的标准下分别获得了99.78±0.14%和99.82±0.20%的优异伽马及格率,与基于kvct的方案(99.70±0.31%和99.79±1.32%)相当。这项研究证明了pix2pix模型在生成高质量skVCT图像方面的潜力,这可以显著增强适应性放射治疗(ART)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信