A fair machine learning model to predict flares of systemic lupus erythematosus.

IF 3.4 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-07-26 eCollection Date: 2025-08-01 DOI:10.1093/jamiaopen/ooaf072
Yongqiu Li, Lixia Yao, Yao An Lee, Yu Huang, Peter A Merkel, Ernest Vina, Ya-Yun Yeh, Yujia Li, John M Allen, Jiang Bian, Jingchuan Guo
{"title":"A fair machine learning model to predict flares of systemic lupus erythematosus.","authors":"Yongqiu Li, Lixia Yao, Yao An Lee, Yu Huang, Peter A Merkel, Ernest Vina, Ya-Yun Yeh, Yujia Li, John M Allen, Jiang Bian, Jingchuan Guo","doi":"10.1093/jamiaopen/ooaf072","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that disproportionately affects women and racial/ethnic minority groups. Predicting disease flares is essential for improving patient outcomes, yet few studies integrate both clinical and social determinants of health (SDoH). We therefore developed FLAME (<b>FLA</b>re <b>M</b>achine learning prediction of SL<b>E</b>), a machine learning pipeline that uses electronic health records (EHRs) and contextual-level SDoH to predict 3-month flare risk, emphasizing explainability and fairness.</p><p><strong>Materials and methods: </strong>We conducted a retrospective cohort study of 28 433 patients with SLE from the University of Florida Health (2011-2022), linked to 675 contextual-level SDoH variables. We used XGBoost and logistic regression models to predict 3-month flare risk, evaluating model performance using the area under the receiver operating characteristic (AUROC). We applied SHapley Additive exPlanations (SHAP) values and causal structure learning to identify key predictors. Fairness was assessed using the equality of opportunity metric, measured by the false-negative rate across racial/ethnic groups.</p><p><strong>Results: </strong>The FLAME model, incorporating clinical and contextual-level SDoH, achieved an AUROC of 0.66. The clinical-only model performed slightly better (AUROC of 0.67), while the SDoH-only model had lower performance (AUROC of 0.54). SHAP analysis identified headache, organic brain syndrome, and pyuria as key predictors. Causal learning revealed interactions between clinical factors and contextual-level SDoH. Fairness assessments showed no significant biases across groups.</p><p><strong>Discussion: </strong>FLAME offers a fair and interpretable approach to predicting SLE flares, providing meaningful insights that may guide future clinical interventions.</p><p><strong>Conclusions: </strong>FLAME shows promise as an EHR-based tool to support personalized, equitable, and holistic SLE care.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 4","pages":"ooaf072"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that disproportionately affects women and racial/ethnic minority groups. Predicting disease flares is essential for improving patient outcomes, yet few studies integrate both clinical and social determinants of health (SDoH). We therefore developed FLAME (FLAre Machine learning prediction of SLE), a machine learning pipeline that uses electronic health records (EHRs) and contextual-level SDoH to predict 3-month flare risk, emphasizing explainability and fairness.

Materials and methods: We conducted a retrospective cohort study of 28 433 patients with SLE from the University of Florida Health (2011-2022), linked to 675 contextual-level SDoH variables. We used XGBoost and logistic regression models to predict 3-month flare risk, evaluating model performance using the area under the receiver operating characteristic (AUROC). We applied SHapley Additive exPlanations (SHAP) values and causal structure learning to identify key predictors. Fairness was assessed using the equality of opportunity metric, measured by the false-negative rate across racial/ethnic groups.

Results: The FLAME model, incorporating clinical and contextual-level SDoH, achieved an AUROC of 0.66. The clinical-only model performed slightly better (AUROC of 0.67), while the SDoH-only model had lower performance (AUROC of 0.54). SHAP analysis identified headache, organic brain syndrome, and pyuria as key predictors. Causal learning revealed interactions between clinical factors and contextual-level SDoH. Fairness assessments showed no significant biases across groups.

Discussion: FLAME offers a fair and interpretable approach to predicting SLE flares, providing meaningful insights that may guide future clinical interventions.

Conclusions: FLAME shows promise as an EHR-based tool to support personalized, equitable, and holistic SLE care.

Abstract Image

Abstract Image

Abstract Image

一个公平的机器学习模型来预测系统性红斑狼疮的耀斑。
目的:系统性红斑狼疮(SLE)是一种慢性自身免疫性疾病,多发于女性和少数族裔群体。预测疾病爆发对于改善患者预后至关重要,但很少有研究将健康的临床和社会决定因素(SDoH)结合起来。因此,我们开发了FLAME (SLE的FLAre机器学习预测),这是一种机器学习管道,使用电子健康记录(EHRs)和情境级SDoH来预测3个月的耀斑风险,强调可解释性和公平性。材料和方法:我们对来自佛罗里达健康大学(2011-2022)的28433例SLE患者进行了一项回顾性队列研究,与675个背景水平的SDoH变量相关。我们使用XGBoost和逻辑回归模型来预测3个月的耀斑风险,并使用接收器工作特征下的面积(AUROC)来评估模型的性能。我们应用SHapley加性解释(SHAP)值和因果结构学习来识别关键预测因子。公平是用机会均等指标来评估的,通过不同种族/民族群体的假阴性率来衡量。结果:纳入临床和情境水平SDoH的FLAME模型的AUROC为0.66。单纯临床模型的AUROC略好(0.67),单纯sdoh模型的AUROC较低(0.54)。SHAP分析发现头痛、器质性脑综合征和脓尿是主要的预测因素。因果学习揭示了临床因素与情境水平SDoH之间的相互作用。公平评估显示各组之间没有明显的偏见。讨论:FLAME为预测SLE耀斑提供了一种公平且可解释的方法,为指导未来的临床干预提供了有意义的见解。结论:FLAME有望作为一种基于电子病历的工具,支持个性化、公平和全面的SLE护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信