Walter Vieri, Veronica Ghini, Paola Turano, Lara Massai, Luigi Messori, Marco Fondi
{"title":"Modeling the metabolic response of A2780 ovarian cancer cells to gold-based cytotoxic drugs.","authors":"Walter Vieri, Veronica Ghini, Paola Turano, Lara Massai, Luigi Messori, Marco Fondi","doi":"10.1038/s41540-025-00535-9","DOIUrl":null,"url":null,"abstract":"<p><p>Gold compounds are a promising class of experimental anticancer metallodrugs. Unlike platinum-based drugs, their antiproliferative effects are thought to result mainly from modulation of cancer cell metabolism rather than direct interaction with DNA. Previous NMR studies have shown that four cytotoxic gold compounds - auranofin, aurothiomalate and two gold N-heterocyclic carbenes - induce distinct metabolic changes in A2780 ovarian cancer cells, suggesting the occurrence of different mechanisms of action. To better understand these effects, we constructed a genome-scale metabolic model (GEM) of A2780 cells to analyze the NMR-detected metabolomic changes. The model successfully predicts the diverse metabolic responses induced by each gold compound and identifies common metabolic changes. These results confirm the potential of GEMs as a powerful tool for interpreting and predicting cellular responses to gold-based drugs, providing insights into their mechanisms of action and potential therapeutic applications.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"83"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00535-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gold compounds are a promising class of experimental anticancer metallodrugs. Unlike platinum-based drugs, their antiproliferative effects are thought to result mainly from modulation of cancer cell metabolism rather than direct interaction with DNA. Previous NMR studies have shown that four cytotoxic gold compounds - auranofin, aurothiomalate and two gold N-heterocyclic carbenes - induce distinct metabolic changes in A2780 ovarian cancer cells, suggesting the occurrence of different mechanisms of action. To better understand these effects, we constructed a genome-scale metabolic model (GEM) of A2780 cells to analyze the NMR-detected metabolomic changes. The model successfully predicts the diverse metabolic responses induced by each gold compound and identifies common metabolic changes. These results confirm the potential of GEMs as a powerful tool for interpreting and predicting cellular responses to gold-based drugs, providing insights into their mechanisms of action and potential therapeutic applications.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.