The Role of CCL11-CCR3 Induced Mitochondrial Dysfunction and Oxidative Stress in Cognitive Impairment in Early-onset Schizophrenia: Insights from Preclinical Studies.

IF 5 2区 医学 Q2 CELL BIOLOGY
Xing Luo, Jiangwen Dong, Tao Li
{"title":"The Role of CCL11-CCR3 Induced Mitochondrial Dysfunction and Oxidative Stress in Cognitive Impairment in Early-onset Schizophrenia: Insights from Preclinical Studies.","authors":"Xing Luo, Jiangwen Dong, Tao Li","doi":"10.1007/s10753-025-02344-y","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal cytokine expression has been implicated as a potential contributor to neurodegeneration. This study aimed to investigate the plasma cytokine profiles in patients with early-onset schizophrenia (SCZ) and to explore the molecular mechanisms underlying the role of the key cytokine CCL11 in contributing to cognitive impairment. Plasma concentrations of 44 cytokines were quantified in individuals with SCZ. The effects of CCL11 on mitochondrial function were examined in vitro using primary hippocampal neurons. An in vivo model was subsequently developed by administering CCL11 into the lateral ventricle. The impact of the CCL11-CCR3 signaling pathway on mitochondrial function, oxidative stress, and cognitive function within the hippocampus was assessed using a combination of behavioral testing, molecular biology experiments, transcriptomic analysis, and non-targeted metabolomics. In individuals with SCZ, CCL11 and IL-13 levels were notably higher than in controls. In vitro, CCL11 exposure caused mitochondrial dysfunction and increased reactive oxygen species in hippocampal neurons. In vivo, CCL11-treated mice showed cognitive deficits, mitochondrial fission, and neuroinflammation in the hippocampus. Comprehensive integration of transcriptomic and metabolomic data revealed that CCL11 significantly disrupted the Glucokinase/Glucose-6-phosphate metabolism pathway, coinciding with elevated metabolites indicative of oxidative damage. Finally, downregulation of the CCR3 receptor in the hippocampus mitigated CCL11-induced oxidative stress, mitochondrial dysfunction, and cognitive impairment. CCL11 causes cytotoxicity in neurons by increasing oxidative stress and mitochondrial dysfunction. In a mouse model, knockout of the CCR3 receptor alleviates CCL11-induced cognitive impairment, mitochondrial dysfunction, and oxidative stress.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02344-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal cytokine expression has been implicated as a potential contributor to neurodegeneration. This study aimed to investigate the plasma cytokine profiles in patients with early-onset schizophrenia (SCZ) and to explore the molecular mechanisms underlying the role of the key cytokine CCL11 in contributing to cognitive impairment. Plasma concentrations of 44 cytokines were quantified in individuals with SCZ. The effects of CCL11 on mitochondrial function were examined in vitro using primary hippocampal neurons. An in vivo model was subsequently developed by administering CCL11 into the lateral ventricle. The impact of the CCL11-CCR3 signaling pathway on mitochondrial function, oxidative stress, and cognitive function within the hippocampus was assessed using a combination of behavioral testing, molecular biology experiments, transcriptomic analysis, and non-targeted metabolomics. In individuals with SCZ, CCL11 and IL-13 levels were notably higher than in controls. In vitro, CCL11 exposure caused mitochondrial dysfunction and increased reactive oxygen species in hippocampal neurons. In vivo, CCL11-treated mice showed cognitive deficits, mitochondrial fission, and neuroinflammation in the hippocampus. Comprehensive integration of transcriptomic and metabolomic data revealed that CCL11 significantly disrupted the Glucokinase/Glucose-6-phosphate metabolism pathway, coinciding with elevated metabolites indicative of oxidative damage. Finally, downregulation of the CCR3 receptor in the hippocampus mitigated CCL11-induced oxidative stress, mitochondrial dysfunction, and cognitive impairment. CCL11 causes cytotoxicity in neurons by increasing oxidative stress and mitochondrial dysfunction. In a mouse model, knockout of the CCR3 receptor alleviates CCL11-induced cognitive impairment, mitochondrial dysfunction, and oxidative stress.

CCL11-CCR3诱导的线粒体功能障碍和氧化应激在早发性精神分裂症认知障碍中的作用:来自临床前研究的见解
异常细胞因子表达被认为是神经退行性变的潜在因素。本研究旨在研究早发性精神分裂症(SCZ)患者血浆细胞因子谱,并探讨关键细胞因子CCL11在认知功能障碍中的作用的分子机制。测定了44种细胞因子在SCZ患者血浆中的浓度。体外用海马原代神经元检测CCL11对线粒体功能的影响。随后将CCL11注入侧脑室,建立了体内模型。通过行为测试、分子生物学实验、转录组学分析和非靶向代谢组学,评估CCL11-CCR3信号通路对海马线粒体功能、氧化应激和认知功能的影响。SCZ患者的CCL11和IL-13水平明显高于对照组。在体外,CCL11暴露导致线粒体功能障碍和海马神经元活性氧增加。在体内,ccl11处理的小鼠表现出认知缺陷、线粒体分裂和海马神经炎症。综合转录组学和代谢组学数据显示,CCL11显著破坏了葡萄糖激酶/葡萄糖-6-磷酸代谢途径,与表明氧化损伤的代谢物升高相一致。最后,海马中CCR3受体的下调减轻了ccl11诱导的氧化应激、线粒体功能障碍和认知障碍。CCL11通过增加氧化应激和线粒体功能障碍导致神经元细胞毒性。在小鼠模型中,敲除CCR3受体可减轻ccl11诱导的认知障碍、线粒体功能障碍和氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信