Giacomo Zuccon, Edoardo Longo, Vitali Tugarinov, Emanuele Boselli, Alberto Ceccon
{"title":"Probing Self-Association of (+)-Catechin Coupled with Hydrogen-Deuterium Exchange by Solution NMR Spectroscopy","authors":"Giacomo Zuccon, Edoardo Longo, Vitali Tugarinov, Emanuele Boselli, Alberto Ceccon","doi":"10.1002/cphc.202500325","DOIUrl":null,"url":null,"abstract":"<p>Flavan-3-ols, a subclass of flavonoids found in tea, wine, and other plant-derived foods, exhibit potent antioxidant activity and contribute to various health benefits. Their ability to self-associate into supramolecular structures influences their stability, bioavailability, and function in complex matrices. In this study, we investigate the hydrogen–deuterium (H/D) exchange kinetics at the C6 and C8 positions on the A-ring of (+)-catechin, a widely occurring flavan-3-ol, using <sup>1</sup>H nuclear magnetic resonance spectroscopy. At low concentrations, the exchange follows a two-step pseudo-first-order mechanism, with slightly faster deuteration at C6 than at C8 under physiological conditions (298 K, pD 6). Unexpectedly, higher catechin concentrations lead to accelerated exchange rates, not attributable to pD variation but rather to reversible self-association. Through analysis of exchange-induced chemical shift changes (<span></span><math></math>, Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion data, and peak intensity time courses, this study characterizes a weak, transient monomer–dimer equilibrium (lifetime ≈ milliseconds). Importantly, the deuteration rate within the dimer is up to 170-fold faster than in the monomer. These findings uncover a previously unrecognized role of transient self-assembly in modulating the reactivity of polyphenols in solution and underscore the relevance of H/D exchange at carbon centers as a sensitive probe for supramolecular dynamics in polyphenolic systems.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 19","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500325","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flavan-3-ols, a subclass of flavonoids found in tea, wine, and other plant-derived foods, exhibit potent antioxidant activity and contribute to various health benefits. Their ability to self-associate into supramolecular structures influences their stability, bioavailability, and function in complex matrices. In this study, we investigate the hydrogen–deuterium (H/D) exchange kinetics at the C6 and C8 positions on the A-ring of (+)-catechin, a widely occurring flavan-3-ol, using 1H nuclear magnetic resonance spectroscopy. At low concentrations, the exchange follows a two-step pseudo-first-order mechanism, with slightly faster deuteration at C6 than at C8 under physiological conditions (298 K, pD 6). Unexpectedly, higher catechin concentrations lead to accelerated exchange rates, not attributable to pD variation but rather to reversible self-association. Through analysis of exchange-induced chemical shift changes (, Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion data, and peak intensity time courses, this study characterizes a weak, transient monomer–dimer equilibrium (lifetime ≈ milliseconds). Importantly, the deuteration rate within the dimer is up to 170-fold faster than in the monomer. These findings uncover a previously unrecognized role of transient self-assembly in modulating the reactivity of polyphenols in solution and underscore the relevance of H/D exchange at carbon centers as a sensitive probe for supramolecular dynamics in polyphenolic systems.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.