{"title":"Trans-Cannabitriol as a Dual Inhibition of MPOX Adhesion Receptors L1R and E8L: An In Silico Perspective.","authors":"Hanane Abbou, Razana Zegrari, Zainab Gaouzi, Lahcen Belyamani, Ilhame Bourais, Rachid Eljaoudi","doi":"10.1177/11779322251355315","DOIUrl":null,"url":null,"abstract":"<p><p>The re-emergence of monkeypox virus (MPXV) as a global public health concern highlights the urgent need for novel therapeutic strategies targeting viral proteins essential for infection. This study investigates the inhibitory potential of Trans-Cannabitriol (trans-CBT), a minor cannabinoid, against MPXV proteins L1R, H3L, and E8L using an integrative in silico framework. Homology modeling was employed to generate 3D structures of these proteins, followed by molecular docking and 1 µs molecular dynamics (MD) simulations. The trans-CBT demonstrated strong binding affinities for L1R (-10.76 kcal/mol) and E8L (-8.531 kcal/mol), with weaker interactions observed for H3L (-5.739 kcal/mol). Four MD simulations of 1 µs revealed that trans-CBT stabilizes L1R by reducing its flexibility and solvent exposure, potentially inhibiting viral entry into host cells. In contrast, trans-CBT increased the flexibility and conformational changes of E8L, possibly impairing its function in viral attachment and pathogenesis. ADMET and target prediction analyses further supported its drug-likeness and safety, with the absence of strong CB1/CB2 binding suggesting that trans-CBT may exert its antiviral effects independently of classical cannabinoid pathways. These findings provide insights into the diverse mechanisms of action of trans-CBT on MPXV proteins and underscore its potential as a broad-spectrum antiviral agent. While promising, further experimental validation and optimization are necessary to assess the real-world applicability of trans-CBT in combating MPXV infections. This work contributes to the expanding field of cannabinoid-derived antivirals and highlights the importance of exploring under-investigated phytochemicals for therapeutic applications.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"19 ","pages":"11779322251355315"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322251355315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The re-emergence of monkeypox virus (MPXV) as a global public health concern highlights the urgent need for novel therapeutic strategies targeting viral proteins essential for infection. This study investigates the inhibitory potential of Trans-Cannabitriol (trans-CBT), a minor cannabinoid, against MPXV proteins L1R, H3L, and E8L using an integrative in silico framework. Homology modeling was employed to generate 3D structures of these proteins, followed by molecular docking and 1 µs molecular dynamics (MD) simulations. The trans-CBT demonstrated strong binding affinities for L1R (-10.76 kcal/mol) and E8L (-8.531 kcal/mol), with weaker interactions observed for H3L (-5.739 kcal/mol). Four MD simulations of 1 µs revealed that trans-CBT stabilizes L1R by reducing its flexibility and solvent exposure, potentially inhibiting viral entry into host cells. In contrast, trans-CBT increased the flexibility and conformational changes of E8L, possibly impairing its function in viral attachment and pathogenesis. ADMET and target prediction analyses further supported its drug-likeness and safety, with the absence of strong CB1/CB2 binding suggesting that trans-CBT may exert its antiviral effects independently of classical cannabinoid pathways. These findings provide insights into the diverse mechanisms of action of trans-CBT on MPXV proteins and underscore its potential as a broad-spectrum antiviral agent. While promising, further experimental validation and optimization are necessary to assess the real-world applicability of trans-CBT in combating MPXV infections. This work contributes to the expanding field of cannabinoid-derived antivirals and highlights the importance of exploring under-investigated phytochemicals for therapeutic applications.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.