Next-gen senotherapeutics: AI/ML-driven strategies for aging and age-related disorders.

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-22 DOI:10.1016/bs.apha.2025.01.017
Prashanth S Javali, Ashish Kumar, Subhajit Sarkar, R Sree Varshini, D Jose Mathew, Kavitha Thirumurugan
{"title":"Next-gen senotherapeutics: AI/ML-driven strategies for aging and age-related disorders.","authors":"Prashanth S Javali, Ashish Kumar, Subhajit Sarkar, R Sree Varshini, D Jose Mathew, Kavitha Thirumurugan","doi":"10.1016/bs.apha.2025.01.017","DOIUrl":null,"url":null,"abstract":"<p><p>Senotherapeutics comprising senolytics and senostats/senomorphs of natural and synthetic origin are powerful pharmacological interventions to combat aging and age-related disorders (ARD): cancer, HIV, diabetes, and neurodegenerative diseases. STs are novel strategies in the geroscience arena selectively targeting senescent cells responsible for unhealthy aging and ARD. The absence of specific biomarkers, gaps in integrating molecular mechanisms, and inadequate therapeutic drugs hamper translating the results from bench to bedside. Current innovations suggested to advance the field include machine learning, omics-based approaches, nanocarriers, molecularly imprinted nanoparticles, CART cells, and monoclonal antibodies. This book chapter will focus on STs interrupting molecular pathways involving senescent cells, SASPs, and immune cells in preclinical and clinical settings. Also, the chapter will highlight applications of AI/ML/DL tools like Random Forest, Support Vector Machines, phenotypic screening, neural networks, and predictive modeling for discovering STs to expedite the translation of preclinical findings to clinical applications. Despite challenges to obtaining quality data and model interpretability, the future of ML in senotherapeutics holds great promise in promoting longevity.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"104 ","pages":"87-119"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.01.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Senotherapeutics comprising senolytics and senostats/senomorphs of natural and synthetic origin are powerful pharmacological interventions to combat aging and age-related disorders (ARD): cancer, HIV, diabetes, and neurodegenerative diseases. STs are novel strategies in the geroscience arena selectively targeting senescent cells responsible for unhealthy aging and ARD. The absence of specific biomarkers, gaps in integrating molecular mechanisms, and inadequate therapeutic drugs hamper translating the results from bench to bedside. Current innovations suggested to advance the field include machine learning, omics-based approaches, nanocarriers, molecularly imprinted nanoparticles, CART cells, and monoclonal antibodies. This book chapter will focus on STs interrupting molecular pathways involving senescent cells, SASPs, and immune cells in preclinical and clinical settings. Also, the chapter will highlight applications of AI/ML/DL tools like Random Forest, Support Vector Machines, phenotypic screening, neural networks, and predictive modeling for discovering STs to expedite the translation of preclinical findings to clinical applications. Despite challenges to obtaining quality data and model interpretability, the future of ML in senotherapeutics holds great promise in promoting longevity.

下一代老年治疗:人工智能/机器学习驱动的衰老和年龄相关疾病策略。
由天然和合成来源的抗衰老药和抗衰老药/ senostats/senomorphs组成的老年治疗药物是对抗衰老和年龄相关疾病(ARD)的有力药物干预措施:癌症、艾滋病毒、糖尿病和神经退行性疾病。STs是老年科学领域选择性靶向导致不健康衰老和ARD的衰老细胞的新策略。特异性生物标志物的缺乏,整合分子机制的空白,以及治疗药物的不足阻碍了将结果从实验室转化为临床。当前的创新包括机器学习、基于组学的方法、纳米载体、分子印迹纳米颗粒、CART细胞和单克隆抗体。这本书的章节将集中在STs中断分子途径涉及衰老细胞,sasp,和免疫细胞在临床前和临床设置。此外,本章将重点介绍AI/ML/DL工具的应用,如随机森林、支持向量机、表型筛选、神经网络和预测建模,以发现STs,加快临床前研究结果向临床应用的转化。尽管在获得高质量数据和模型可解释性方面存在挑战,但ML在老年治疗中的未来在促进长寿方面有着巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信