Qian Yu, Li Li, Shuyi Yu, Jialin Han, Qian Cheng, Zhikang Cui, Hang Chen, Ming Li, Zhiming Lu
{"title":"Mitochondrial Damage and Autophagy Dysregulation in Alzheimer’s Disease: Mechanisms and Therapeutic Opportunities","authors":"Qian Yu, Li Li, Shuyi Yu, Jialin Han, Qian Cheng, Zhikang Cui, Hang Chen, Ming Li, Zhiming Lu","doi":"10.1007/s11064-025-04490-z","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive neurodegeneration and a variety of cognitive deficits. Of note, mitochondrial malfunctions occur early in the disease's development. Mitophagy impairment leads to the build-up of damaged mitochondria inside the cells, causing malfunction and eventual death of the cells. This review summarizes the mechanisms linking mitochondrial damage and autophagy dysregulation to AD and highlights potential therapeutic opportunities. We summarize how mitochondrial dysfunction contributes to AD, including defects in mitochondrial biogenesis, impaired dynamics, the impact of AD-related protein aggregates on mitochondrial integrity, and defective axonal transport. We also explore the roles of mitophagy in AD, including its function in the removal of harmed proteins and organelles. Finally, we highlight the therapeutic strategies for the treatment of AD, targeting molecular components involved in mitochondrial damage and autophagy dysregulation in AD, i.e., antioxidants, mitochondrial modulators, and mitophagy enhancers.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04490-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive neurodegeneration and a variety of cognitive deficits. Of note, mitochondrial malfunctions occur early in the disease's development. Mitophagy impairment leads to the build-up of damaged mitochondria inside the cells, causing malfunction and eventual death of the cells. This review summarizes the mechanisms linking mitochondrial damage and autophagy dysregulation to AD and highlights potential therapeutic opportunities. We summarize how mitochondrial dysfunction contributes to AD, including defects in mitochondrial biogenesis, impaired dynamics, the impact of AD-related protein aggregates on mitochondrial integrity, and defective axonal transport. We also explore the roles of mitophagy in AD, including its function in the removal of harmed proteins and organelles. Finally, we highlight the therapeutic strategies for the treatment of AD, targeting molecular components involved in mitochondrial damage and autophagy dysregulation in AD, i.e., antioxidants, mitochondrial modulators, and mitophagy enhancers.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.