Combination of flow cytometry and metagenomics to monitor the effect of raw vs digested manure on microbial diversity in anaerobic digestion of Napier grass.
{"title":"Combination of flow cytometry and metagenomics to monitor the effect of raw vs digested manure on microbial diversity in anaerobic digestion of Napier grass.","authors":"Madhumita Priyadarsini, Abhishek S Dhoble","doi":"10.1007/s10661-025-14399-3","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiomes play a crucial role in anaerobic digestion (AD), by degrading the complex lignocellulosic biomass leading to biomethane production. This study emphasizes the role of microbial diversity and its impact on the digester's performance with raw (CD) and digested manure (ADS) as a source of microbiome and Napier grass (NG) as feedstock. The integration of flow cytometry and metagenomics provides a novel perspective on microbial dynamics during anaerobic digestion. Initially, the inocula (ADS and CD) had 354 bacterial and 8 archaeal genera in common that decreased to 39 bacteria and 1 archaeon at the end of experiment, indicating significant shift in microbial diversity during the process. Metagenome sequencing showed that Clostridium was the most abundant genera in NG digested with ADS, while Prevotella was in NG digested with CD. An approximately 2.45% increase in Clostridium in NG digested with ADS led to VFA accumulation and pH drop, inhibiting methanogens and lower biogas production. Most of the flow cytometric populations showed positive correlation with Prevotella suggesting its key role in breaking down of complex substrate. The population 2, 3, and 5 positively correlated to biogas production. NG digested with CD produced nearly twice biogas yield (1064.33 ± 119.97 mL) compared to ADS (508 ± 20.95 mL) which corresponds to the enhanced microbial activity in CD. These findings suggest that microbiome of CD might be better acclimatized for NG degradation than ADS as NG is often used as cattle fodder.</p>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 8","pages":"963"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10661-025-14399-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiomes play a crucial role in anaerobic digestion (AD), by degrading the complex lignocellulosic biomass leading to biomethane production. This study emphasizes the role of microbial diversity and its impact on the digester's performance with raw (CD) and digested manure (ADS) as a source of microbiome and Napier grass (NG) as feedstock. The integration of flow cytometry and metagenomics provides a novel perspective on microbial dynamics during anaerobic digestion. Initially, the inocula (ADS and CD) had 354 bacterial and 8 archaeal genera in common that decreased to 39 bacteria and 1 archaeon at the end of experiment, indicating significant shift in microbial diversity during the process. Metagenome sequencing showed that Clostridium was the most abundant genera in NG digested with ADS, while Prevotella was in NG digested with CD. An approximately 2.45% increase in Clostridium in NG digested with ADS led to VFA accumulation and pH drop, inhibiting methanogens and lower biogas production. Most of the flow cytometric populations showed positive correlation with Prevotella suggesting its key role in breaking down of complex substrate. The population 2, 3, and 5 positively correlated to biogas production. NG digested with CD produced nearly twice biogas yield (1064.33 ± 119.97 mL) compared to ADS (508 ± 20.95 mL) which corresponds to the enhanced microbial activity in CD. These findings suggest that microbiome of CD might be better acclimatized for NG degradation than ADS as NG is often used as cattle fodder.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.