Directly Oxidizing Ethanol to Glycolic Acid over a Single-Rh-Site Catalyst via Water-Mediated Oxygen Shuttle.

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bin Li, Jiali Mu, Guifa Long, Xiangen Song, Yang Zhao, Ende Huang, Siyue Liu, Yao Wei, Fanfei Sun, Siquan Feng, Qiao Yuan, Xingju Li, Yutong Cai, Yue Zhang, Wenrui Dong, Weiqing Zhang, Xueming Yang, Dehui Deng, Li Yan, Yunjie Ding
{"title":"Directly Oxidizing Ethanol to Glycolic Acid over a Single-Rh-Site Catalyst via Water-Mediated Oxygen Shuttle.","authors":"Bin Li, Jiali Mu, Guifa Long, Xiangen Song, Yang Zhao, Ende Huang, Siyue Liu, Yao Wei, Fanfei Sun, Siquan Feng, Qiao Yuan, Xingju Li, Yutong Cai, Yue Zhang, Wenrui Dong, Weiqing Zhang, Xueming Yang, Dehui Deng, Li Yan, Yunjie Ding","doi":"10.1021/jacs.5c07150","DOIUrl":null,"url":null,"abstract":"<p><p>Direct oxidation of ethanol to glycolic acid in aqueous solutions under mild conditions offers opportunities for sustainable chemistry. Herein, we report a water-mediated oxygen-shuttle mechanism on S/N/I atoms synergistically coordinated single-Rh-site catalysts (Rh<sub>1</sub>/AC-SNI<sub>400</sub>) to enable the direct production of glycolic acid from ethanol oxidation with 93% selectivity in liquid products and a TOF of 250 h<sup>-1</sup> at 160 °C. Comprehensive characterizations including isotope labeling experiments and theoretical calculations reveal that hydroxyl radicals (•OH), generated via O<sub>2</sub>/I-triggered H<sub>2</sub>O dissociation, insert into C-I bonds to form hydroxyl groups and meanwhile, replace the original OH in ethanol to form C═O, ensuring that all oxygen atoms of glycolic acid directly originate from H<sub>2</sub>O. O<sub>2</sub> enters the system through the decomposition and regeneration of HIO intermediates, completing the oxygen-shuttle cycle driven by sustainable regeneration of water. Furthermore, the optimized S/N/I atoms' synergistical coordination enhances electron delocalization around single-Rh sites, substantially reducing the activation barriers of critical reaction steps and outperforming Rh nanoparticles by 16-fold in activity.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c07150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct oxidation of ethanol to glycolic acid in aqueous solutions under mild conditions offers opportunities for sustainable chemistry. Herein, we report a water-mediated oxygen-shuttle mechanism on S/N/I atoms synergistically coordinated single-Rh-site catalysts (Rh1/AC-SNI400) to enable the direct production of glycolic acid from ethanol oxidation with 93% selectivity in liquid products and a TOF of 250 h-1 at 160 °C. Comprehensive characterizations including isotope labeling experiments and theoretical calculations reveal that hydroxyl radicals (•OH), generated via O2/I-triggered H2O dissociation, insert into C-I bonds to form hydroxyl groups and meanwhile, replace the original OH in ethanol to form C═O, ensuring that all oxygen atoms of glycolic acid directly originate from H2O. O2 enters the system through the decomposition and regeneration of HIO intermediates, completing the oxygen-shuttle cycle driven by sustainable regeneration of water. Furthermore, the optimized S/N/I atoms' synergistical coordination enhances electron delocalization around single-Rh sites, substantially reducing the activation barriers of critical reaction steps and outperforming Rh nanoparticles by 16-fold in activity.

通过水介导的氧穿梭在单rh位点催化剂上直接氧化乙醇生成乙醇酸。
在温和的条件下,乙醇在水溶液中直接氧化为乙醇酸提供了可持续化学的机会。在此,我们报道了S/N/I原子协同协调的单rh位点催化剂(Rh1/AC-SNI400)上的水介导氧穿梭机制,使乙醇氧化在液体产物中具有93%的选择性和250 h-1的TOF,在160°C下直接生产乙醇酸。包括同位素标记实验和理论计算在内的综合表征表明,通过O2/ i触发的H2O解离产生的羟基自由基(•OH)插入C- i键形成羟基,同时取代乙醇中原来的OH形成C = O,确保乙醇酸的所有氧原子直接来自H2O。O2通过HIO中间体的分解和再生进入系统,完成由水的可持续再生驱动的氧穿梭循环。此外,优化后的S/N/I原子的协同配位增强了单Rh位点周围的电子离域,大大降低了关键反应步骤的激活障碍,活性比Rh纳米粒子高16倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信