Ami Koga, Manami Fuchinoue, Kiyohiko Seki, Kaoru Araki, Tomoichirou Kusumoto, Junichi Taira, Hiroaki Kodama, Satoshi Osada
{"title":"Modulation of Antimicrobial Activities of Aib-Based Artificial Amphipathic α-Helical Peptides by Incorporating Histidine Residues","authors":"Ami Koga, Manami Fuchinoue, Kiyohiko Seki, Kaoru Araki, Tomoichirou Kusumoto, Junichi Taira, Hiroaki Kodama, Satoshi Osada","doi":"10.1002/psc.70046","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cationic antimicrobial peptides (CAMPs) exhibit potent antibacterial activity by disrupting bacterial membranes. We investigated the effect of histidine incorporation on BKBA-20, a designed amphiphilic helical peptide composed of alternating 2-aminoisobutyric acid (Aib) and lysine. Substitution at lysine sites (<b>1a</b>–<b>1e</b> series) reduced net charge and antimicrobial activity, though certain analogues (<b>1c</b>, <b>1d</b>) demonstrated minimal antibacterial activity against <i>Escherichia coli</i>. In contrast, substitution at Aib sites (<b>2a</b>–<b>2c</b> series) preserved some extent of helical structure and improved activity under acidic conditions. Notably, substitutions at the terminal of the peptide were more effective at acidic pH, while the slightly medial side of the peptide favored activity at neutral pH. Hemolysis assays confirmed low cytotoxicity of the modified peptides. These results suggest histidine incorporation as a promising strategy to broaden the spectrum of CAMPs, particularly against Gram-negative bacteria, without increasing toxicity.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cationic antimicrobial peptides (CAMPs) exhibit potent antibacterial activity by disrupting bacterial membranes. We investigated the effect of histidine incorporation on BKBA-20, a designed amphiphilic helical peptide composed of alternating 2-aminoisobutyric acid (Aib) and lysine. Substitution at lysine sites (1a–1e series) reduced net charge and antimicrobial activity, though certain analogues (1c, 1d) demonstrated minimal antibacterial activity against Escherichia coli. In contrast, substitution at Aib sites (2a–2c series) preserved some extent of helical structure and improved activity under acidic conditions. Notably, substitutions at the terminal of the peptide were more effective at acidic pH, while the slightly medial side of the peptide favored activity at neutral pH. Hemolysis assays confirmed low cytotoxicity of the modified peptides. These results suggest histidine incorporation as a promising strategy to broaden the spectrum of CAMPs, particularly against Gram-negative bacteria, without increasing toxicity.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.